Math, asked by smartyaryan143, 1 year ago



ᴀ ʀᴇᴄᴛᴀɴɢᴜʟᴀʀ ᴠᴇssᴇʟ ᴏғ ᴅɪᴍᴇɴsɪᴏɴs 30 ᴄᴍ x 22 ᴄᴍ x 10 ᴄᴍ ɪs ᴄᴏᴍᴘʟᴇᴛʟʏ ғɪʟʟᴇᴅ ᴡɪᴛʜ ᴡᴀᴛᴇʀ. ᴛʜɪs
ᴡᴀᴛᴇʀ ɪs ᴘᴏᴜʀᴇᴅ ᴄᴏᴍᴘʟᴇᴛᴇʟʏ ɪɴᴛᴏ ᴀ ᴄᴏɴɪᴄᴀʟ ᴠᴇssᴇʟ ᴏғ ʙᴀsᴇ ᴅɪᴀᴍᴇᴛᴇʀ 30 CM ғɪɴᴅ ᴛʜᴇ ʜᴇɪɢʜᴛ ᴏғ ᴡᴀᴛᴇʀ ɪɴ ᴄᴏɴɪᴄᴀʟ ᴠᴇssᴇʟ??​

Answers

Answered by AngelicDoll
12

Answer:

\huge{\underline{\overline{\color{darkblue}{\bf{\mid{♡AngelicDoll♡}\mid}}}}}

\huge\bold\green{Given :-}

Diameter = 30 cm

Dimensions of rectangle = 30 × 22 × 10

Length = 30 cm

Breadth = 22 cm

Height = 10 cm

Volume of cuboid = L\times{B}\times{H}

Volume of cuboid = {30}\times{22}\times{10}

Volume of cuboid = \bf\orange{6600}{cm³}

Conical vessel diameter = 30 cm

Radius = \frac{Diameter}{2}

Radius = \frac{30}{2}

Radius = \bf\orange{15}{cm}

Volume of cone = \frac{1}{3} πr²h

\bold\frac{1}{3}\times\frac{22}{7}\times{15}\times{15}\times{h}{=}{6600}

\bold\frac{22}{7}\times{5}\times{15}\times{h}{=}{6600}

\bold{22}\times{75}\times{h}{=}{6600}\times{7}

h = \bold\frac{6600\times7}{22\times75}

h = \bold\frac{300\times7}{75}

h = \bold{(4\times7)cm}

h = \bf\orange{28~cm}

The height of the water in the conical vessel is \bf\blue{28}{cm}

<marquee>

\huge\red{AngelicDoll..!!!}

Similar questions