Math, asked by LYCONTRIX, 1 year ago

★ STANDARD QUESTION 8 ★

★ CONTENT QUALITY SUPPORT REQUIRED ★

Solve for " x "
1.) x ∈ N
2.)x ∈ R

 \frac{x +  \sqrt{x {}^{2}  - 1} }{x -  \sqrt{x {}^{2}  - 1} }  +  \frac{x -  \sqrt{x {}^{2}  - 1} }{x +  \sqrt{x {}^{2}  - 1} }  = 98

Attachments:

Answers

Answered by sivaprasath
2
Solution :

_____________________________________________________________

Given :

 \frac{x+ \sqrt{x^2 -1 } }{x -  \sqrt{x^2 - 1} }  +  \frac{x- \sqrt{x^2 -1 } }{x +  \sqrt{x^2 - 1} }  = 98

_____________________________________________________________

To Find :

Value of x,.

_____________________________________________________________

By cross - Multiplication,.

We  get,

 \frac{(x+ \sqrt{x^2 -1 } )(x +  \sqrt{x^2 - 1} )+( x- \sqrt{x^2 -1 } )(x -  \sqrt{x^2 - 1} )}{(x +  \sqrt{x^2 - 1} )(x -  \sqrt{x^2 - 1} )} = 98

 \frac{x^2 + ( \sqrt{x^2 -1})^2 - 2x( \sqrt{x^2 - 1} )+ x^2 + ( \sqrt{x^2 - 1} )^2 +2x( \sqrt{x^2 - 1} ) }{x^2 - ( \sqrt{x^2 - 1} )}  = 98

 \frac{x^2 + x^2 - 1 + x^2 + x^2 - 1}{x^2 - x^2 + 1} = 98

 \frac{4x^2 - 2}{1} = 98

4x^2 - 2 = 98

 4x^2 = 98 + 2

4x^ 2 = 100

x^2 =  \frac{100}{4}

x^2 = 25

x =  \sqrt{25}

∴ x = 5 (or) x = - 5

_____________________________________________________________

                                             Hope it Helps!!

⇒ Mark as Brainliest,..

sivaprasath: neglect that A,.
Answered by Anonymous
3

Step-by-step explanation:

Hope this information help's you....

•Please follow me.......

________please________

________M@®k________

________@§___________

_______B®@¡Π[ ¡§t_______

hope this helps you....♥️♥️♥️

please mark as brain list....♥️♥️♥️

please follow me....♥️♥️♥️

tell me how useful it is ?? by marking brain list..... please...friend and also with likes....♥️♥️♥️♥️♥️♥️♥️♥️♥️

Attachments:
Similar questions