Physics, asked by vikramq724, 11 months ago

Standing waves of frequency 5.0 kHz are produced in a tube filled with oxygen at 300 K. The separation between the consecutive nodes is 3.3 cm. Calculate the specific heat capacities Cp and Cv of the gas.

Answers

Answered by AditiHegde
0

Standing waves of frequency 5.0 kHz are produced in a tube filled with oxygen at 300 K. The separation between the consecutive nodes is 3.3 cm. The specific heat capacities Cp and Cv of the gas are: Cv = 20.7 J/mol K, Cp = 29 J/mol K.

  • Given,
  • Standing waves of frequency = f = 5 kHz = 500 Hz
  • Temperature of oxygen = T = 300 K
  • The separation between the consecutive nodes = l/2 = 3.3 cm
  • ∴ l = 6.6 cm
  • we have,
  • v = fl = 500 * 6.6 = 330 m/s
  • Formula
  • v = \sqrt{\dfrac{yRT}{M} } \\\\v^2= \dfrac{yRT}{M}\\\\330^2 = \dfrac{2490y}{32 * 10^{-3}}\\\\108900 = \dfrac{y * 8.3 * 300 }{32 * 10^{-3}}\\\\y = 1.3995
  • Now,
  • The specific heat at constant volume,
  • Cv = R / (y-1)
  • C_v=\dfrac{8.3}{1.3995}\\\\C_v=20.7J/mol K
  • The specific heat at constant pressure,
  • Cp = Cv + R
  • Cp=20.7 + 8.3
  • Cp = 29 J/mol K
Answered by shilpa85475
0

C_{P}=29.0 \mathrm{J} / \mathrm{mol}-\mathrm{K}, C_{v}=20.7 \mathrm{J} \mathrm{mol}-\mathrm{K}

Explanation:

Step 1:

Standing wave frequency , f=5 \times 10^{3} \mathrm{Hz}

Oxygen Temperature, T=300 \mathrm{K}

Separation of nodes in tunnel of the Kundt  

Step 2:

we know that

\frac{l}{2}=\text { node separation }=3.3 \mathrm{cm}

\therefore l=6.6 \times 10^{-2} \mathrm{m}

\mathrm{v}=\mathrm{fl}=5 \times 10^{3} \times 6.6 \times 10^{-2}

=(66 \times 5)=330 \frac{\mathrm{m}}{\mathrm{s}}

\mathrm{v}=\sqrt{\frac{\gamma}{\mathrm{RTM}}}

\mathrm{v}^{2}=\frac{\gamma}{\mathrm{RTM}}

\gamma=\frac{32330 \times 330 \times 32}{8.3 \times 300 \times 100}

=1.3995

Step 3:

Constant volume at specific heat , C_{v}=\frac{R}{\gamma-1}=\frac{8.3}{0.3995}

= 20.7 \mathrm{J} \mathrm{mol}-\mathrm{K}

Constant pressure at specific heat ,  

C_{P}=C_{v}+\mathrm{R}

C_{P}=20.7+8.3

C_{P}=29.0 \mathrm{J} / \mathrm{mol}-\mathrm{K}

Similar questions