Chemistry, asked by ayaannehal986, 3 months ago

state 1,2,3and zeroth value of thermodynamics​

Answers

Answered by shivamsingh8443
1

Answer:

bbvh i ug ih ih ignite noj oj ih in bug ih ih guno

Answered by rahikulislam697
0

Explanation:

The four fundamental laws of thermodynamics express empirical facts and define physical quantities, such as temperature, heat, thermodynamic work, and entropy, that characterize thermodynamic processes and thermodynamic systems in thermodynamic equilibrium. They describe the relationships between these quantities, and form a basis for precluding the possibility of certain phenomena, such as perpetual motion. In addition to their use in thermodynamics, the laws have interdisciplinary applications in physics and chemistry.

Traditionally, thermodynamics has stated three fundamental laws: the first law, the second law, and the third law.[1][2][3] A more fundamental statement was later labelled the 'zeroth law'. The law of conservation of mass is also an equally fundamental concept in the theory of thermodynamics, but it is not generally included as a law of thermodynamics.

The zeroth law of thermodynamics defines thermal equilibrium and forms a basis for the definition of temperature. It says that if two systems are each in thermal equilibrium with a third system, then they are in thermal equilibrium with each other.

The first law of thermodynamics says that when energy passes into or out of a system (as work, heat, or matter), the system's internal energy changes in accord with the law of conservation of energy. Equivalently, perpetual motion machines of the first kind (machines that produce work with no energy input) are impossible.

The second law of thermodynamics can be expressed in two main ways. In terms of possible processes, Rudolf Clausius stated that heat does not spontaneously pass from a colder body to a warmer body. Equivalently, perpetual motion machines of the second kind (machines that spontaneously convert thermal energy into mechanical work) are impossible. In terms of entropy, in a natural thermodynamic process, the sum of the entropies of interacting thermodynamic systems increases.

The third law of thermodynamics states that a system's entropy approaches a constant value as the temperature approaches absolute zero. With the exception of non-crystalline solids (glasses) the entropy of a system at absolute zero is typically close to zero.[2]

Similar questions