State and explain Faraday's law of EMI also explain motional EMF from Faraday's law
Answers
Lenz's law is a consequence of conservation of energy applied to electromagnetic induction. ... While Faraday's law tells us the magnitude of the EMF produced, Lenz's law tells us the direction that current will flow. It states that the direction is always such that it will oppose the change in flux which produced it.
Answer:
An emf induced by the motion of the conductor across the magnetic field is a motional electromotive force. The equation is given by E = -vLB. This equation is true as long as the velocity, field, and length are mutually perpendicular.
Explanation:
Faraday's first law of electromagnetic induction states, “Whenever a conductor is placed in a varying magnetic field, an electromotive force is induced. Likewise, if the conductor circuit is closed, a current is induced, which is called induced current.”
- Faraday's law is a single equation describing two different phenomena: the motional emf generated by a magnetic force on a moving wire (see the Lorentz force), and the transformer emf generated by an electric force due to a changing magnetic field (described by the Maxwell–Faraday equation).
- Faraday's law states that the absolute value or magnitude of the circulation of the electric field E around a closed loop is equal to the rate of change of the magnetic flux through the area enclosed by the loop. The equation below expresses Faraday's law in mathematical form.