state and prove BPT
Answers
Answer:
Statement : If a line passing through two sides of triangle then it os parallel to third side then divides other two sides in same ratio.
In ΔADE (Baes AD)
Area of triangle =
2
1
.AD.ME _______ (1)
Again in ΔADE (Base AE)
ar.(ΔADE)=
2
1
.AE.ND ________ (2)
In ΔBDE (Base BD)
ar.(ΔBDE)=
2
1
.DB.ME ________ (3)
In ΔDEC (Base EC)
ar.(ΔDEC)=
2
1
.EC.ND ________ (4)
Equation (1) & (3)
ar.ΔBDE
ar.ΔADE
=
2
1
.DB.ME
2
1
.AD.ME
ar.ΔBDE
arΔADE
=
DB
AD
_______ (5)
Now equation (2) & (4)
ar.(ΔDEC)
ar.(ΔADE)
=
2
1
.EC.ND
2
1
.AE.ND
ΔDEC
ar.(ΔADE)
=
EC
AE
_______ (6)
By theorem,
ar.(ΔBDE)=ar.(ΔDEC)
ar.(ΔBDC)
ar.(ΔADE)
=
ar.(ΔDEC)
ar.(ΔADE)
=
BD
AD
ar.(ΔDEC)
ar.(ΔADE)
=
BD
AD
________ (7)
By equation (6) & (7)
There L.H.S is same and R.H.S is same.
EC
AE
=
BD
AD
∴
DB
AD
=
EC
AE
Step-by-step explanation:
hope it helps you!!
Answer:
Step-by-step explanation: