State and prove de-moivre's theorem,
Answers
Answered by
5
De-moivre’s theorem:
(cosθ + i sinθ)n = (cos nθ + i sin nθ) for all n ϵ N
Proof:
We have to prove this theorem using mathematical induction.
Let p(n): (cosθ + i sinθ)n = (cos nθ + i sin nθ) for
all n є N
Put n = 1
We get p(1): (cosθ + i sinθ)1 = (cos θ + i sin θ)
That is (cosθ + i sinθ) = cosθ + i sinθ
Thus p(n) is true for n = 1 → (1)
Let us assume that p(n) is true for n = 2, 3, …k
⇒ (cosθ + i sinθ)k = (cos kθ + i sin kθ) → (2)
Now we have to prove that p(n) is also true for
n = (k + 1)
That is we have to prove that (cosθ + i sinθ)k +
1 = [cos (k + 1)θ + i sin (k + 1)θ]
Consider, (cosθ + i sinθ)k + 1 = (cosθ + i sinθ)k × (cosθ + i sinθ)
= (cos kθ + i sin kθ) × (cosθ + i sinθ)
= [cos kθ × cosθ + i cos kθ × sinθ + i sin kθ × cosθ + i2sin kθ × sinθ]
= [cos kθ × cosθ + i cos kθ × sinθ + i sin kθ × cosθ – sin kθ × sinθ]
= [(cos kθ cosθ – sin kθ sinθ) + i (cos kθ sinθ + sin kθ cosθ)]
= [cos (k + 1)θ + i sin(k + 1)θ]
Thus p(n) is also true for n = n + 1 → (3)
From (1), (2) and (3) by the principle of mathematical induction, we get
(cosθ + i sinθ)n = (cos nθ + i sin nθ)
for all n ϵ N
hope it will help you
.
(cosθ + i sinθ)n = (cos nθ + i sin nθ) for all n ϵ N
Proof:
We have to prove this theorem using mathematical induction.
Let p(n): (cosθ + i sinθ)n = (cos nθ + i sin nθ) for
all n є N
Put n = 1
We get p(1): (cosθ + i sinθ)1 = (cos θ + i sin θ)
That is (cosθ + i sinθ) = cosθ + i sinθ
Thus p(n) is true for n = 1 → (1)
Let us assume that p(n) is true for n = 2, 3, …k
⇒ (cosθ + i sinθ)k = (cos kθ + i sin kθ) → (2)
Now we have to prove that p(n) is also true for
n = (k + 1)
That is we have to prove that (cosθ + i sinθ)k +
1 = [cos (k + 1)θ + i sin (k + 1)θ]
Consider, (cosθ + i sinθ)k + 1 = (cosθ + i sinθ)k × (cosθ + i sinθ)
= (cos kθ + i sin kθ) × (cosθ + i sinθ)
= [cos kθ × cosθ + i cos kθ × sinθ + i sin kθ × cosθ + i2sin kθ × sinθ]
= [cos kθ × cosθ + i cos kθ × sinθ + i sin kθ × cosθ – sin kθ × sinθ]
= [(cos kθ cosθ – sin kθ sinθ) + i (cos kθ sinθ + sin kθ cosθ)]
= [cos (k + 1)θ + i sin(k + 1)θ]
Thus p(n) is also true for n = n + 1 → (3)
From (1), (2) and (3) by the principle of mathematical induction, we get
(cosθ + i sinθ)n = (cos nθ + i sin nθ)
for all n ϵ N
hope it will help you
.
Similar questions