Math, asked by Mark8277, 1 year ago

state and prove Euler's theorem for homogeneous function of two variables.

Answers

Answered by aquialaska
8

Answer:

To prove :

 x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial x}=nz    

Step-by-step explanation:

Let z be a function dependent on two variable x and y.

Let z = f(x,y)

Using property of homogeneous function,

z = x^{n}Ф(\frac{y}{x}    .................(1)

Differentiating (1) with respect to x

\frac{\partial z}{\partial x}= \phi (\frac{y}{x})nx^{n-1}+x^{n}\phi '(\frac{y}{x})\frac{\partial \frac{y}{x}}{\partial x}

\frac{\partial z}{\partial x} = \phi (\frac{y}{x})nx^{n-1}+x^{n}\phi '(\frac{y}{x})\frac{-y}{x^{2}}  ................(2)

Differentiating (1) with respect to y

\frac{\partial z}{\partial y} = \phi '(\frac{y}{x})\frac{\partial }{\partial y}\frac{y}{x}x^{n}+\frac{\partial }{\partial y}x^{n}\phi (\frac{y}{x})

\frac{\partial z}{\partial y} = \phi '(\frac{y}{x})\frac{1}{x}x^{n}+\frac{\partial }{\partial y}x^{n}\phi (\frac{y}{x})

\frac{\partial z}{\partial y} = \phi '(\frac{y}{x})x^{n-1} ...........(3)

Multiply (2) by x add(3) by y and then adding we get

x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y} =\phi (\frac{y}{x})nx^{n}-x^{n-1}y\phi '(\frac{y}{x})+y  \phi '(\frac{y}{x})x^{n-1}

x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=nx^{n}\phi \frac{y}{x}

x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=nz

Hence, proved.




Answered by sudhamahure
0

Answer:

f(x,y)=(x^+y^3)(x-y)

Similar questions