Math, asked by renukumari76, 11 months ago

state the basic proportionality theoremproof of basic proportionality theorem ​

Answers

Answered by aman93364
25

Step-by-step explanation:

bro here is your answer

Attachments:
Answered by nilesh102
16

hi mate,

PROOF OF BPT

Given: In ΔABC, DE is parallel to BC

Line DE intersects sides AB and AC in points D and E respectively.

To Prove:

AD AE

----- = -----

DB AC

Construction: Draw EF ⟂ AD and DG⟂ AE and join the segments BE and CD.

Proof:

Area of Triangle= ½ × base × height

In ΔADE and ΔBDE,

Ar(ADE) ½ ×AD×EF AD

----------- = ------------------ = ------ .....(1)

Ar(DBE) ½ ×DB×EF DB

In ΔADE and ΔCDE,

Ar(ADE) ½×AE×DG AE

------------ = --------------- = ------ ........(2)

Ar(ECD) ½×EC×DG EC

Note that ΔDBE and ΔECD have a common base DE and lie between the same parallels DE and BC. Also, we know that triangles having the same base and lying between the same parallels are equal in area.

So, we can say that

Ar(ΔDBE)=Ar(ΔECD)

Therefore,

A(ΔADE) A(ΔADE)

------------- = ---------------

A(ΔBDE) A(ΔCDE)

Therefore,

AD AE

----- = -----

DB AC

Hence Proved.

Attachments:
Similar questions