Biology, asked by pallavi96chatto12345, 1 year ago

STATE THE GENERAL PROPERTIES OF NEUROTOXIN , ENTEROTOXIN AND CYTOTOXIN.

Answers

Answered by punithchowdary
2
PROPERTIES OF ENTEROTOXIN:
An enterotoxin is a protein exotoxin released by a microorganism that targets the intestines.

Enterotoxins are chromosomally encoded or plasmid encoded[2] exotoxins that are produced and secreted from several bacterial organisms. They are often heat-stable, and are of low molecular weight and water-soluble. Enterotoxins are frequently cytotoxic and kill cells by altering the apical membrane permeability of the mucosal (epithelial) cells of the intestinal wall. They are mostly pore-forming toxins (mostly chloride pores), secreted by bacteria, that assemble to form pores in cell membranes. This causes the cells to die.

Enterotoxins have a particularly marked effect upon the gastrointestinal tract, causing vomiting, diarrhea, and abdominal pain. The action of enterotoxins leads to increased chloride ion permeability of the apical membrane of intestinal mucosal cells. These membrane pores are activated either by increased cAMP or by increased calcium ion concentration intracellularly. The pore formation has a direct effect on the osmolarity of the luminal contents of the intestines. Increased chloride permeability leads to leakage into the lumen followed by sodium and water movement. This leads to a secretory diarrhea within a few hours of ingesting enterotoxin. Several microbial organisms contain the necessary enterotoxin to create such an effect, such as Staphylococcus aureus and E. coli.

PROPERTIES OF NEUROTOXIN:
Neurotoxins are toxins that are poisonous or destructive to nerve tissue (causing neurotoxicity). Neurotoxins are an extensive class of exogenous chemical neurological insults that can adversely affect function in both developing and mature nervous tissue. The term can also be used to classify endogenous compounds, which, when abnormally contact, can prove neurologically toxic. Though neurotoxins are often neurologically destructive, their ability to specifically target neural components is important in the study of nervous systems. Common examples of neurotoxins include lead, ethanol (drinking alcohol), manganese glutamate, nitric oxide (NO),botulinum toxin (e.g. Botox), tetanus toxin, and tetrodotoxin. Some substances such as nitric oxide and glutamate are in fact essential for proper function of the body and only exert neurotoxic effects at excessive concentrations.

Neurotoxins inhibit neuron control over ion concentrations across the cell membrane,or communication between neurons across a synapse.Local pathology of neurotoxin exposure often includes neuron excitotoxicity or apoptosis but can also include glial cell damage. Macroscopic manifestations of neurotoxin exposure can include widespread central nervous system damage such as intellectual disability, persistent memory impairments, epilepsy, and dementia. Additionally, neurotoxin-mediated peripheral nervous system damage such as neuropathy or myopathy is common. Support has been shown for a number of treatments aimed at attenuating neurotoxin-mediated injury, such as antioxidant and antitoxin administration.

Similar questions