Math, asked by 00010002, 2 months ago

State wheather 2x^2+5/2x-√3=0 is a quadratic equation or not ?
a. Yes
b. No ​

Answers

Answered by vaishnavi1177
0

ɢɪᴠᴇɴ→

2 {x}^{2}  +  \frac{5}{2x}  -  \sqrt{3}  = 0 \\

ᴛᴏ ꜰɪɴᴅ→

Whether the given equation is a quadratic equation or not

ꜱᴏʟᴜᴛɪᴏɴ→

→2 {x}^{2}  +  \frac{5}{2x}  -  \sqrt{3}  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \\  → \frac{2x(2 {x}^{2}) + 5  + 2x(- \sqrt{3})}{2x}  = 0 \\  \\ →4 {x}^{3}  +  5  - 2 \sqrt{3}x  = 0  \times 2x  \:  \:  \:  \:  \:  \: \\  \\ →4 {x}^{3}   - 2 \sqrt{3}x   + 5= 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

No, it is not a quadratic equation as degree is not equal to 2. Degree of the equation is 3.

Answered by BrainlyArnab
1

"

No

Step-by-step explanation:

.

Q.

2x² + 5/2x - 3 = 0 is a quadratic equation or not ?

.

Solution -

 \sf =  > 2 {x}^{2}  +  \frac{5}{2x}  -  \sqrt{ 3}  = 0 \\  \\   \sf =  > 2x( {2x}^{2}  +  \frac{5}{2x} -   \sqrt{3})  = 0 \\  \\   \sf=  > 2x( {2x}^{2} ) + 2x( \frac{5}{2x} ) - 2x( \sqrt{3} ) = 0 \\  \\   \sf=  >  {4x}^{3}  + 5 - 2 \sqrt{3} x = 0 \\  \\   \sf =  >  {4x}^{3}  - 2 \sqrt{3} x + 5 = 0

Here the highest power (degree) is 3, so it is not a quadratic equation, it's a cubic equation.

hope it helps.

Similar questions