Math, asked by shiv1955, 9 months ago

state whether the following quadratic equation roots x^2 -3x+4=0​

Answers

Answered by PsychoBrainly
0

Correct Question :

State whether the following quadratic equation has real or equal roots or not  x^2 - 3x + 4 = 0​

\rule{200}{2}

Solution :

\sf{We \ know \ that,} \\ \\ \Large{\implies{\boxed{\boxed{\sf{x = \dfrac{-b \pm \sqrt{D}}{2a}}}}}} \\ \\ \sf{\dashrightarrow x = \dfrac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(4)}}{2(1)}} \\ \\ \sf{\dashrightarrow x = \dfrac{3 \pm \sqrt{9 - 16}}{2}} \\ \\ \sf{\dashrightarrow x = \dfrac{3 \pm \sqrt{-7}}{2}} \\ \\ \sf{\dashrightarrow x = \dfrac{3 \pm \sqrt{7i}}{2}} \\ \\ \bf{\therefore \ The \ quadractic \ equation \ x^2 -3x+4 \ doesn't \ have \ real \ and \ equal \roots.}

Similar questions