Statement A: (a + b)² = (a-b)² + 4ab.
Statement B: (a+b)² + (a-b)² = 4ab
true or false?
Answers
Answered by
3
Hiiii
Answer:
statement a- True
statement b- false
Step-by-step explanation:
*STATEMENT A*
(a+b)²=(a-b)² +4ab
let's solve
using identities
(a + b)²=a² + b² + 2ab and (a - b)²= a² + b² - 2ab
Therefore,
a² + b² + 2ab = a² + b² - 2ab + 4ab
a² + b² + 2ab = a² + b² + 2ab
it means its true
*STATEMENT B*
(a+b)² + (a-b)² = 4ab
using identities
(a + b)²=a² + b² + 2ab and (a - b)²= a² + b² - 2ab
Therefore,
a² + b² + 2ab + a² + b² - 2ab = 4ab
a² + a²+ b² + b² + 2ab - 2ab = 4ab
2a² + 2b² + 0 =4ab
so 2a² + 2b² is not equals to 4ab
it means its false
please mark as brainliest❤
Have a good day
Answered by
47
A N S W E R :
- Statement A – True
- Statement B – False
1). Given :
- Statement A
To find :
- Find True or False ?
As we know that,
Used identify
Solution :
Hence,
________________________
2). Given :
- Statement B
To find :
- Find True or False ?
As we know that,
Used identify
Solution :
Hence,
________________________
Similar questions