step of photosynthesis
Answers
Answer:
6CO2+6H2O gives C6H12O6+6O2
Explanation:
plants take the inorganic soucres of CO2 and water and turns it into glucose and carbohydrates in the source of solar energy and chlorophyll. The food is stored in the form of starch for later use.
Mark me brainliest if u like my answer
Explanation:
The processes of all organisms—from bacteria to humans—require energy. To get this energy, many organisms access stored energy by eating food. Carnivores eat other animals and herbivores eat plants. But where does the stored energy in food originate? All of this energy can be traced back to the process of photosynthesis and light energy from the sun.
Photosynthesis is essential to all life on earth. It is the only biological process that captures energy from outer space (sunlight) and converts it into chemical energy in the form of G3P (
Glyceraldehyde 3-phosphate) which in turn can be made into sugars and other molecular compounds. Plants use these compounds in all of their metabolic processes; plants do not need to consume other organisms for food because they build all the molecules they need. Unlike plants, animals need to consume other organisms to consume the molecules they need for their metabolic processes.
The Process of Photosynthesis
During photosynthesis, molecules in leaves capture sunlight and energize electrons, which are then stored in the covalent bonds of carbohydrate molecules. That energy within those covalent bonds will be released when they are broken during cell respiration. How long lasting and stable are those covalent bonds? The energy extracted today by the burning of coal and petroleum products represents sunlight energy captured and stored by photosynthesis almost 200 million years ago.
The importance of photosynthesis is not just that it can capture sunlight’s energy. A lizard sunning itself on a cold day can use the sun’s energy to warm up. Photosynthesis is vital because it evolved as a way to store the energy in solar radiation (the “photo-” part) as high-energy electrons in the carbon-carbon bonds of carbohydrate molecules (the “-synthesis” part). Those carbohydrates are the energy source that heterotrophs use to power the synthesis of ATP via respiration. Therefore, photosynthesis powers 99 percent of Earth’s ecosystems. When a top predator, such as a wolf, preys on a deer, the wolf is at the end of an energy path that went from nuclear reactions on the surface of the sun, to light, to photosynthesis, to vegetation, to deer, and finally to wolf.
Main Structures and Summary of Photosynthesis
In multicellular autotrophs, the main cellular structures that allow photosynthesis to take place include chloroplasts, thylakoids, and chlorophyll.
In plants, the process of photosynthesis takes place in the mesophyll of the leaves, inside the chloroplasts.
Chloroplasts contain disc-shaped structures called thylakoids, which contain the pigment chlorophyll.
Chlorophyll absorbs certain portions of the visible spectrum and captures energy from sunlight.
Overview of Photosynthesis
Photosynthesis is a multi-step process that requires sunlight, carbon dioxide, and water as substrates. It produces oxygen and glyceraldehyde-3-phosphate (G3P or GA3P), simple carbohydrate molecules that are high in energy and can subsequently be converted into glucose, sucrose, or other sugar molecules. These sugar molecules contain covalent bonds that store energy. Organisms break down these molecules to release energy for use in cellular work.
image
Photosynthesis: Photosynthesis uses solar energy, carbon dioxide, and water to produce energy-storing carbohydrates. Oxygen is generated as a waste product of photosynthesis.
The energy from sunlight drives the reaction of carbon dioxide and water molecules to produce sugar and oxygen, as seen in the chemical equation for photosynthesis. Though the equation looks simple, it is carried out through many complex steps. Before learning the details of how photoautotrophs convert light energy into chemical energy, it is important to become familiar with the structures involved.
Photosynthesis and the Leaf
In plants, photosynthesis generally takes place in leaves, which consist of several layers of cells. The process of photosynthesis occurs in a middle layer called the mesophyll. The gas exchange of carbon dioxide and oxygen occurs through small, regulated openings called stomata (singular: stoma ), which also play a role in the plant’s regulation of water balance. The stomata are typically located on the underside of the leaf, which minimizes water loss. Each stoma is flanked by guard cells that regulate the opening and closing of the stomata by swelling or shrinking in response to osmotic changes.
Mark me brainliest if u like my answer