Math, asked by sudhasudhakar10, 11 months ago

Steps pls and the answer is given

Attachments:

Answers

Answered by Anonymous
17

Given :

  • A tree breaks due to storm.
  • The broken part from the top touches the ground making an angle of 30° with ground.
  • The distance between foot of tree to the point where the broken bent part touches the ground is 8 m.

To Find :

  • Initial Height of the Tree.

Solution :

AC = x m = The portion from where the tree remained unbroken.

CB = y = The broken portion of the tree after the storm.

AB = 8 m = Distance between the foot of the tree and the point where the broken part touches the ground.

Consider Δ ABC.

AC = x m

AB = 8 m.

\theta = 30°

Using,

\sf{Tan\:\theta\:=\:\dfrac{Opposite\:side\:to\:\angle\:\theta}{Adjacent\:side\:to\:\angle\:\theta}}

Block in the data,

\longrightarrow \sf{30\:^\circ\:=\:\dfrac{x}{8}}

\longrightarrow \sf{\dfrac{1}{{\sqrt{3}}}=\:\:\dfrac{x}{{8}}}

\longrightarrow \sf{8\:=\:\sqrt{3}x}

\longrightarrow \sf{\dfrac{8}{{\sqrt{3}}}=x\:\:\:(1)}

Now, in Δ ABC.

AB = 8 m

CB = y m.

\sf{\theta\:=\:30\:^\circ}

Using,

\sf{Sin\:\theta\:=\:\dfrac{Opposite\:to\:\angle\:\theta}{Hypotenuse}}

Block in the data,

\longrightarrow \sf{30^\circ\:=\:\dfrac{x}{y}}

\longrightarrow \sf{\dfrac{1}{2}=} \sf{\dfrac{8}{{\sqrt{3}}}}

\longrightarrow \sf{\dfrac{1}{2}\:=\:\dfrac{8}{{\sqrt{3}y}}}

\longrightarrow \sf{\sqrt{3}y=8\:\times\:2}

\longrightarrow \sf{\sqrt{3}y=16}

\longrightarrow \sf{y=\dfrac{16}{{\sqrt{3}}}\:\:\:(2)}

AC = x = 8/3 m

CD = y = 16/3 m.

Height of the tree is the sum of AC and CD.

\longrightarrow \sf{\dfrac{8}{\sqrt{3}}} + \sf{\dfrac{16}{\sqrt{3}}}

\longrightarrow \sf{\dfrac{8\:\sqrt{3}+16\:\sqrt{3}}{3}}

\longrightarrow \sf{\dfrac{8\:+16\:(\sqrt{3})}{3}}

\longrightarrow \sf{\dfrac{24\:\sqrt{3}}{3}}

\longrightarrow \sf{\dfrac{\cancel{24}\:\sqrt{3}}{\cancel{3}}}

\longrightarrow \sf{8\:\sqrt{3}}

\longrightarrow \sf{8\:\times\:1.732}

\sf{\big[\sqrt{3}\:=\:1.732\:\big]}

\longrightarrow \sf{13.856}

\large{\boxed{\sf{\purple{Height\:of\:the\:tree\:=\:AD\:=\:13.856\:m}}}}

Attachments:
Similar questions