sub duplicate ratio of ✓x:✓y
Answers
Answer:
Solution:-
Given:- x:y be the sub-duplicate ratio of (x−a):(y−a)
To prove:- a=
a+y
xy
Proof:-
x:y be the sub-duplicate ratio of (x−a):(y−a), i.e.,
x:y=
x−a
:
y−a
⇒
y
x
=
y−a
x−a
Squaring both sides,
y
2
x
2
=
y−a
x−a
⇒x
2
(y−a)=y
2
(x−a){By cross multiplication}
⇒x
2
y−x
2
a=y
2
x−y
2
a
⇒x
2
y−y
2
x=x
2
a−y
2
a
⇒xy(x−y)=a(x
2
−y
2
)
⇒a=
(x−y)(x+y)
xy(x−y)
⇒a=
(x+y)
xy
Answer:
Solution:-
Given:- x:y be the sub-duplicate ratio of (x−a):(y−a)
To prove:- a=
a+y
xy
Proof:-
x:y be the sub-duplicate ratio of (x−a):(y−a), i.e.,
x:y=
x−a
:
y−a
⇒
y
x
=
y−a
x−a
Squaring both sides,
y
2
x
2
=
y−a
x−a
⇒x
2
(y−a)=y
2
(x−a){By cross multiplication}
⇒x
2
y−x
2
a=y
2
x−y
2
a
⇒x
2
y−y
2
x=x
2
a−y
2
a
⇒xy(x−y)=a(x
2
−y
2
)
⇒a=
(x−y)(x+y)
xy(x−y)
⇒a=
(x+y)
xy