Physics, asked by Vishal101100, 6 months ago

**✿❀Subh Sandhya mitron.....❀✿**



Answer the attachment.....༻✧

Dont spam ༶•┈┈⛧┈♛​

Attachments:

Answers

Answered by Anonymous
30

Given:

\large\rm { x = -1m, y = 2m, z = 3m}

Solution:

we know that \large\rm { E_{x} = \frac{ - \partial V}{ \partial x} }

substituting the values

\large\rm { \frac{- \partial}{\partial x} (10x^{2} + 5y^{2} - 3z^{2})}

\large\rm { = -20 x = -20(-1) \boxed{ = \pm 20 Vm^{-1}}}

\large\rm { \ }

\large\rm { \ }

now

\large\rm { E_{y} = \frac{ - \partial V}{ \partial y} }

substituting the values

\large\rm { \frac{- \partial}{\partial y} (10x^{2} + 5y^{2} - 3z^{2})}

\large\rm{ -10(y) = -10(2) \boxed{= -20 Vm^{-1}}}

\large\rm { \ }

\large\rm { \ }

now

\large\rm { E_{z} = \frac{ - \partial V}{ \partial z} }

substituting the values

\large\rm { \frac{- \partial}{\partial z} (10x^{2} + 5y^{2} - 3z^{2})}

\large\rm { = 6(z) = 6(3) \boxed{ = 18 Vm^{-1}}}

Answered by srinuvasukaribandi
1

hope this helps you

hello Vishal

Attachments:
Similar questions