Math, asked by BrainlyWise, 5 hours ago

SUBJECT - Mathematics
CLASS - 10
TOPIC - Trigonometry
\large{\sf{\underline{QUESTION:-}}}
If 2 sin θ = 2 - cos θ and 0° < θ < 90°. Then, Find the value of sin θ.

Answer Must be :-
→ Well explained
→ Step-wise
→ Contain Correct answer
→ No spam

Expecting Answers From :-
→ Brainly Moderators
→ Brainly Stars
→ MathsAryabhatta
→ Brainly Teachers
→ Other Brainliest answerers

Best of Luck !

Answers

Answered by tname3345
75

Step-by-step explanation:

topic :

  • Trigonometry

Question :

  • if 2 sin θ = 2 - cos θ and 0° < θ < 90°. then, find the value of sin θ.

given :

  • sin θ = 2 - cos θ

  • sin θ = 0° < θ < 90°.

to find :

  • find the value of sin θ = ?

  • find the value of sin θ = ?

solution :

Given 2 sin + cos θ = 2

  • cos θ.= 2 - 2 sin

Substituting the value cos θ

  • sin² θ+ (2 - 2 sin θ)² = 1

  • 5 sin²θ -8 sin θ +3 = 0

  • 5 sin θ -3=0

  • sin θ = 3/5

  • cos θ = 4/5

Putting the value in the equation

  • sin θ - 2 cos θ = 3/5 - 2× 4/5 = -1

We cancel this value as

  • 0° ≤0 ≤ 90°

  • then, we come to other factors of equation

  • sin θ - 1 = 0

  • sin θ = 1

  • cos θ = 0

  • sin θ - 2 cos θ = 1 - 2 x 0 = 1

Answered by BrainlyPopularman
166

GIVEN :

 \\ \implies \sf 2  \sin\theta= 2 - \cos \theta \: \: and \: \:  0^{\degree}&lt; \theta&lt; 90^{\degree}

TO FIND :

 \\ \implies \sf Value \:  \:  of   \:  \sin\theta=?

SOLUTION :–

 \\ \implies \sf 2  \sin\theta= 2 - \cos \theta

 \\ \implies \sf 2  \sin\theta -  2  +  \cos \theta = 0

 \\ \implies \sf 2  \sin\theta -  2   =  -   \cos \theta

• Square on both sides –

 \\ \implies \sf (2  \sin\theta -  2) ^{2}  =  (-   \cos \theta)^{2}

 \\ \implies \sf (2  \sin\theta -  2) ^{2}  =  \cos^{2} \theta

 \\ \implies \sf 4(\sin\theta - 1) ^{2}  =  \cos^{2} \theta

 \\ \implies \sf 4(1-\sin\theta) ^{2}  =  \cos^{2} \theta

 \\ \implies \sf 4(1 + \sin^{2} \theta - 2 \sin \theta)   =1 -  \sin^{2} \theta

 \\ \implies \sf 4+4\sin^{2} \theta - 8\sin \theta =1 -  \sin^{2} \theta

 \\ \implies \sf 3+5\sin^{2} \theta - 8\sin \theta =0

 \\ \implies \sf 5\sin^{2} \theta - 8\sin \theta  + 3=0

• By using quadratic formula –

 \\ \implies \sf  \sin \theta =  \dfrac{8 \pm \sqrt{( - 8)^{2}  - 4(5)(3)} }{2 \times 5}

 \\ \implies \sf  \sin \theta =  \dfrac{8 \pm \sqrt{64-60} }{10}

 \\ \implies \sf  \sin \theta =  \dfrac{8 \pm \sqrt{4} }{10}

 \\ \implies \sf  \sin \theta =  \dfrac{8 \pm 2}{10}

 \\ \implies \sf  \sin \theta =  \dfrac{8 + 2}{10} ,\dfrac{8 - 2}{10}

 \\ \implies \sf  \sin \theta =  \dfrac{10}{10} ,\dfrac{6}{10}

 \\ \implies \sf  \sin \theta =  1 ,\dfrac{3}{5}

 \\ \:  \red{ \:[  \:  \:  \: \because \sf \:   \: \: 0^{\degree}&lt; \theta&lt; 90^{\degree} \:  \: ]}

 \\  \:  \: \:  \therefore  \:  \: \sf  \sin \theta =  1 \:  \: (x)

• Hence –

 \\ \implies \pink{ \boxed{ \sf  \sin \theta =  \dfrac{3}{5}}}

_______________________________

 \boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Similar questions