substitution for √(1-x^2) is ----- *
Answers
Answered by
1
Step-by-step explanation:
As the integrand function is defined for
x
∈
[
−
1
,
1
]
, you can substitute:
x
=
sin
t
with
t
∈
[
−
π
2
,
π
2
]
d
x
=
cos
t
d
t
so the integral becomes:
∫
√
1
−
x
2
d
x
=
∫
√
1
−
sin
2
t
cos
t
d
t
=
∫
√
cos
2
t
cos
t
d
t
In the given interval
cos
t
is positive, so
√
cos
2
t
=
cos
t
:
∫
√
1
−
x
2
d
x
=
∫
cos
2
t
d
t
Now we can use the identity:
cos
2
t
=
1
+
cos
(
2
t
)
2
∫
√
1
−
x
2
d
x
=
∫
1
+
cos
(
2
t
)
2
d
t
=
∫
d
t
2
+
1
4
∫
cos
(
2
t
)
d
(
2
t
)
=
1
2
t
+
1
4
sin
2
t
=
1
2
(
t
+
sin
t
cos
t
)
To substitute back
x
we note that:
x
=
sin
t
for
t
∈
[
−
π
2
,
π
2
]
⇒
t
=
arcsin
x
cos
t
=
√
1
−
sin
2
t
=
√
1
−
x
2
Finally:
∫
√
1
−
x
2
d
x
=
1
2
(
arcsin
x
+
x
√
1
−
x
2
)
+
C
Similar questions
Math,
1 month ago
English,
1 month ago
Math,
1 month ago
Computer Science,
4 months ago
Social Sciences,
4 months ago
Hindi,
10 months ago
Hindi,
10 months ago
Music,
10 months ago