Subtract (10110), from (110110) using the two's complement method.
Answers
Answer:
The numbers of bits in the subtrahend is 5 while that of minuend is 6. We make the number of bits in the subtrahend equal to that of minuend by taking a `0’ in the sixth place of the subtrahend.
Now, 2’s complement of 010110 is (101101 + 1) i.e.101010. Adding this with the minuend.
1 1 0 1 1 0 Minuend
1 0 1 0 1 0 2’s complement of subtrahend
Carry over 1 1 0 0 0 0 0 Result of addition
After dropping the carry over we get the result of subtraction to be 100000.
(ii) 10110 – 11010
Solution:
2’s complement of 11010 is (00101 + 1) i.e. 00110. Hence
Minued - 1 0 1 1 0
2’s complement of subtrahend - 0 0 1 1 0
Result of addition - 1 1 1 0 0
As there is no carry over, the result of subtraction is negative and is obtained by writing the 2’s complement of 11100 i.e.(00011 + 1) or 00100.
Hence the difference is – 100.
(iii) 1010.11 – 1001.01
Solution:
2’s complement of 1001.01 is 0110.11. Hence
Minued - 1 0 1 0 . 1 1
2’s complement of subtrahend - 0 1 1 0 . 1 1
Carry over 1 0 0 0 1 . 1 0
After dropping the carry over we get the result of subtraction as 1.10.
(iv) 10100.01 – 11011.10
Solution:
2’s complement of 11011.10 is 00100.10. Hence
Minued - 1 0 1 0 0 . 0 1
2’s complement of subtrahend - 0 1 1 0 0 . 1 0
Result of addition - 1 1 0 0 0 . 1 1
As there is no carry over the result of subtraction is negative and is obtained by writing the 2’s complement of 11000.11.
Hence the required result is – 00111.01.
PLEASE MARK ME AS BRAINLIEST IF THE ANSWER IS CORRECT
Answer:
Subtract (10110), from (110110) using the two's complement method.