Math, asked by maths9123, 11 months ago

the hcf and lcm of 2 numbers are 6a and 360a^2 b^3 respectively. if one of the number is 120b^2, find the other

Answers

Answered by Nereida
64

\huge\star{\green{\underline{\mathfrak{Answer :-}}}}

Given:

  • HCF = 6a
  • LCM = 360a²b³
  • One Number = 120b²

To find:

  • The other number = x

Solution:

We know that,

\boxed{\tt{\red{HCF\times LCM=Product\:of\:both\:numbers}}}

So,

\leadsto\tt{6a\times 360{a}^{2}{b}^{3}=120{b}^{2}\times x}

\leadsto\tt{2160 {a}^{3}{b}^{3}=120{b}^{2}\times x}

\leadsto\tt{x=\dfrac{2160{a}^{3}{b}^{3}}{120{b}^{2}}}

\huge\leadsto{\tt{\green{x=18 {a}^{3}b}}}

So, the other number is = 18a³b.

\rule{200}2

Answered by Anonymous
88

\large{\underline{\bold{\red{\rm{Answer-}}}}}

⠀⠀⠀⠀⠀⠀

The other number is 18a³b.

⠀⠀⠀⠀⠀⠀

\large{\underline{\bold{\red{\rm{Explanation-}}}}}

⠀⠀⠀⠀⠀⠀

\begin{lgathered}\bold{\pink{Given}} \begin{cases}\sf{\blue{LCM\:of\:two\:numbers\:=\:360a^2\:b^2}} \\ \sf{\blue{HCF\:of\:two\:numbers\:=\:6a}}\\ \sf{\blue{One\:number\:=120b^2}}\end{cases}\end{lgathered}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

We have to find the other number.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Let the other number be k.

⠀⠀⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀⠀⠀

\large{\boxed{\rm{HCF\:\times\:LCM\:=\:Product\:of\:two\:numbers}}}

⠀⠀⠀⠀⠀⠀

Putting the values,

⠀⠀⠀⠀⠀⠀

\implies 6a × 360a²b² = 120b² × k

⠀⠀⠀⠀⠀⠀

\implies 2160a³b² = 120b² × k

⠀⠀⠀⠀⠀⠀

\implies k = \sf{\cancel{\dfrac{2160a^3\:b^2}{120b^2}}}

⠀⠀⠀⠀⠀⠀

\implies k = 18a³b

⠀⠀⠀⠀⠀⠀

Hence, the other number is 18a³b.

Similar questions