Subtract 3x – 7x3 + 5x2 from the sum of 2 + 8x2 – x3 and 2x3 – 3x2 + x - 2.
Answers
Answer:
Simplify (6x3 – 2x2 + 8x) – (4x3 – 11x + 10)
Here's the subtraction, done horizontally:
(6x3 – 2x2 + 8x) – (4x3 – 11x + 10)
(6x3 – 2x2 + 8x) – 1(4x3 – 11x + 10)
(6x3 – 2x2 + 8x) – 1(4x3) – 1(–11x) – 1(10)
6x3 – 2x2 + 8x – 4x3 + 11x – 10
6x3 – 4x3 – 2x2 + 8x + 11x – 10
2x3 – 2x2 + 19x – 10
Going vertically, I'll write out the polynomials, leaving gaps as necessary:
\small{ \begin{array}{rrrr}6x^3&-2x^2&+8x& \\4x^3& &-11x&+10\\ \hline \end{array} }
6x
3
4x
3
−2x
2
+8x
−11x
+10
Then I'll flip all of the signs in the second line, and then add down:
\small{ \begin{array}{rrrr}6x^3&-2x^2&+8x& \\\textcolor{red}{\textbf{--}}4x^3& &\textcolor{red}{\textbf{+}}11x&\textcolor{red}{\textbf{--}}10\\ \hline 2x^3&-2x^2&+19x&-10\end{array} }
6x
3
–4x
3
2x
3
−2x
2
−2x
2
+8x
+11x
+19x
–10
−10
Either way, I get the same answer:
2x3 – 2x2 + 19x – 10
Answer:
Simplify (6x3 – 2x2 + 8x) – (4x3 – 11x + 10)
Here's the subtraction, done horizontally:
(6x3 – 2x2 + 8x) – (4x3 – 11x + 10)
(6x3 – 2x2 + 8x) – 1(4x3 – 11x + 10)
(6x3 – 2x2 + 8x) – 1(4x3) – 1(–11x) – 1(10)
6x3 – 2x2 + 8x – 4x3 + 11x – 10
6x3 – 4x3 – 2x2 + 8x + 11x – 10
2x3 – 2x2 + 19x – 10
Going vertically, I'll write out the polynomials, leaving gaps as necessary:
\small{ \begin{array}{rrrr}6x^3&-2x^2&+8x& \\4x^3& &-11x&+10\\ \hline \end{array} }
6x
3
4x
3
−2x
2
+8x
−11x
+10
Then I'll flip all of the signs in the second line, and then add down:
\small{ \begin{array}{rrrr}6x^3&-2x^2&+8x& \\\textcolor{red}{\textbf{--}}4x^3& &\textcolor{red}{\textbf{+}}11x&\textcolor{red}{\textbf{--}}10\\ \hline 2x^3&-2x^2&+19x&-10\end{array} }
6x
3
–4x
3
2x
3
−2x
2
−2x
2
+8x
+11x
+19x
–10
−10
Either way, I get the same answer:
2x3 – 2x2 + 19x – 10