Math, asked by onmusic46, 3 months ago

subtract the sum of 2a + 3b , a - 2b + c , -a + 2c and 4a + 2b - 8 from 10a - 10b + 3​

Answers

Answered by sabitagiri784
3

Step-by-step explanation:

first we 10a-10b+3 subtract 4a+2a-8

6a-8b+5

Answered by Anonymous
40

\large\sf\underline{Understanding\:the\:question:}

Firstly we need to add (2a + 3b) , (a - 2b + c) , (-a+2c) and (4a + 2b - 8) . Then the sum of all these expression must be subtracted from (10a - 10b + 3) . I will solve this question in two steps. So let's begin !

\large\sf\underline{Solution:}

\dag\:\underline{\sf 1^{st}\:step:}

  • Let's add :

\sf\to\:(2a + 3b)+(a - 2b + c)+(-a+2c)+(4a + 2b - 8)

  • Opening the brackets

‎ ‎

\sf\to\:2a + 3b+a - 2b + c-a+2c+4a + 2b - 8

‎ ‎

  • Pairing like terms together

\sf\to\:2a+a-a+4a+ 3b- 2b+ 2b + c+2c - 8

\sf\to\:2a+4a+a-a+ 3b- 2b+ 2b + c+2c - 8

\sf\to\:6a+\cancel{a}-\cancel{a}+ b+ 2b + 3c - 8

\large{\mathfrak\purple{\to\:6a+3b+3c-8}}

\dag\:\underline{\sf 2^{nd}\:step:}

  • Let's subtract the sum we got with (10a - 10b +3)

Subtracting (6a - 3b + 3c - 8) from (10a - 10b + 3)

\sf\to\: (10a - 10b + 3)- (6a - 3b + 3c - 8)

‎ ‎

  • Opening the brackets

\sf\to\: 10a - 10b + 3- 6a + 3b - 3c + 8

  • Pairing like terms together

\sf\to\: 10a- 6a- 10b+ 3b- 3c+ 3+ 8

\large{\mathfrak\purple{\to\:4a-7b-3c+11}}

‎ Scroll left to right to view your answer properly !

!! Hope it helps !!

Similar questions