Math, asked by prabhjotkaur74647, 1 month ago

subtract the sum of 6q2 - 6r2 and -8q2 + 6qr + 2r from the sum of (8q2 + 2qr) + (-4q2 - 7qr -r2)​

Answers

Answered by tennetiraj86
0

Step-by-step explanation:

Solution :-

Given expressions are : 6q²-6r² and -8q²+6qr+2r

Their sum = (6q²-6r²)+(-8q²+6qr+2r )

= 6q²-6r²-8q²+6qr+2r

= -2q²-6r²+6qr+2r

and

Given another expressions are:

8q²+2qr and -4q²-7qr-r²

Their sum = (8q²+2qr)+(-4q²-7qr-r²)

= (8q²-4q²)+(2qr-7qr)-r²

= 4q²-5qr-r²

According to the given problem

(The sum of 8q²+2qr and -4q²-7qr-r² ) - ( The sum of 6q²-6r² and -8q²+6qr+2r

= (4q²-5qr-r²) - ( -2q²-6r²+6qr+2r )

= 4q²-5qr -r²+2q²+6r²-6qr-2r

= (4q²+2q²)+(-5qr-6qr)+(-r²+6r²)-2r

= 6q²-11qr+5r²-2r

Answer :-

Answer for the given problem is 6q²-11qr+5r²-2r

Answered by StarFighter
6

Answer:

Question :-

➸ Subtract the sum of (6q² - 6r²) + (- 8q² + 6qr + 2r) from the sum (8q² + 2qr) + (- 4q² - 7qr - r²).

Given :-

  • The sum of (6q² - 6r²) + (- 8q² + 6qr + 2r).
  • The sum of (8q² + 2qr) + (- 4q² - 7qr - r²).

To Find :-

  • Subtract the given expressions.

Solution :-

\sf\bold{\underline{\bigstar\: In\: first\: case\: :-}}\\

\leadsto \sf\bold{(6q^2 - 6r^2) + (- 8q^2 + 6qr + 2r)}\\

\leadsto \sf 6q^2 - 6r^2 - 8q^2 + 6qr + 2r\\

\leadsto \sf 6q^2 - 8q^2 - 6r^2 + 6qr + 2r\\

\leadsto \sf\bold{\underline{- 2q^2 - 6r^2 + 6qr + 2r\: ------\: (Equation\: No\: 1)}}\\

\sf\bold{\underline{\bigstar\: In\: second\: case\: :-}}\\

\leadsto \sf\bold{(8q^2 + 2qr) + (- 4q^2 - 7qr - r^2)}\\

\leadsto \sf 8q^2 + 2qr - 4q^2 - 7qr - r^2\\

\leadsto \sf 8q^2 - 4q^2 + 2qr - 7qr - r^2\\

\leadsto \sf\bold{\underline{4q^2 - 5qr - r^2\: ------\: (Equation\: No\: 2)}}\\

According to the question :

\implies \sf\bold{(Equation\: No\: 2) - (Equation\: No\: 1)}\\

By putting both the equation we get,

\implies \sf (4q^2 - 5qr - r^2) - (- 2q^2 - 6r^2 + 6qr + 2r)\\

\implies \sf 4q^2 - 5qr - r^2 + 2q^2 + 6r^2 - 6qr - 2r\\

\implies \sf 4q^2 + 2q^2 - 5qr - 6qr - r^2 + 6r^2 - 2r\\

\implies \sf\bold{\underline{6q^2 - 11qr + 5r^2 - 2r}}\\

\small \sf\boxed{\bold{\therefore\: The\: required\: answer\: is\: 6q^2 - 11qr + 5r^2 - 2r\: .}}\\

Similar questions