Math, asked by aadyarav2008, 2 months ago

Subtract
x(y-z) from y(x+4)

Answers

Answered by sshabs
1

Step-by-step explanation:

(2+2) (22*42)(5)(6) 2929p30338

Answered by shivaanshmathur
0

Answer:

A practice sheet for you brother

Step-by-step explanation:

Question 1:

Add the following:

(i) 3x and 7x

(ii) −5xy and 9xy

ANSWER:

We have

(i) 3x + 7x = (3 + 7)x = 10x

(ii) -5xy + 9xy = ( -5 + 9)xy = 4xy

Page No 7.13:

Question 2:

Simplify each of the following:

(i) 7x3y + 9yx3

(ii) 12a2b + 3ba2

ANSWER:

Simplifying the given expressions, we have

(i) 7x3y + 9yx3 = (7 + 9)x3y = 16x3y

(ii) 12a2b + 3ba2 = (12 + 3)a2b = 15a2b

Page No 7.13:

Question 3:

Add the following:

(i) 7abc, −5abc, 9abc, −8abc

(ii) 2x2y, − 4x2y, 6x2y, −5x2y

ANSWER:

Adding the given terms, we have

(i) 7abc + (- 5abc) + (9 abc) + (- 8abc)

   = 7abc - 5abc + 9abc - 8abc

   = (7 - 5 + 9 - 8)abc

   = (16 - 13)abc

   = 3abc

(ii) 2x2y + (- 4x2y) + 6x2y + (- 5x2y)

   = 2x2y - 4x2y + 6x2y - 5x2y

   = (2 - 4 + 6 - 5)x2y

   = (8 - 9)x2y

   = -x2y

Page No 7.14:

Question 4:

Add the following expressions:

(i) x3−2x2y+3xy2−y3, 2x3−5xy2+3x2y−4y3

(ii) a4−2a3b+3ab3+4a2b2+3b4,−2a4−5ab3+7a3b−6a2b2+b4

ANSWER:

Adding the given expressions, we have

(i) x3- 2x2y + 3xy2- y3+ 2x3- 5xy2 + 3x2y- 4y3

    Collecting positive and negative like terms together, we get

    x3+ 2x3- 2x2y + 3x2y + 3xy2- 5xy2 - y3 - 4y3

  = 3x3 + x2y - 2xy2 - 5y3

(ii) (a4- 2a3b + 3ab3 + 4a2b2 + 3b4) + (-2a4- 5ab3 + 7a3b - 6a2b2 + b4)

     a4- 2a3b + 3ab3 + 4a2b2 + 3b4 - 2a4- 5ab3 + 7a3b - 6a2b2 + b4

     Collecting positive and negative like terms together, we get

    a4 - 2a4 - 2a3b + 7a3b + 3ab3 - 5ab3 + 4a2b2 - 6a2b2 + 3b4 + b4

   = - a4 + 5a3b - 2ab3 -  2a2b2 + 4b4

Page No 7.14:

Question 5:

Add the following expressions:

(i) 8a−6ab+5b, −6a−ab−8b and −4a+2ab+3b

(ii) 5x3+7+6x−5x2, 2x2−8−9x, 4x−2x2+3x3, 3x3−9x−x2 and x−x2−x3−4

ANSWER:

(i) Required expression = (8a - 6ab + 5b) + (- 6a - ab - 8b) + ( - 4a + 2ab + 3b)

    Collecting positive and negative like terms together, we get

    8a - 6a - 4a - 6ab - ab + 2ab + 5b - 8b + 3b

    = 8a - 10a - 7ab + 2ab + 8b - 8b

    = - 2a - 5ab

(ii) Required expression = (5x3 + 7 + 6x - 5x2) + (2x2 - 8 - 9x) + (4x - 2x2 + 3x3) + (3x3- 9x - x2) + ( x - x2 - x3- 4)

     Collecting positive and negative like terms together, we get

     5x3+ 3x3 + 3x3- x3- 5x2 + 2x2 - 2x2 - x2- x2 + 6x - 9x + 4x - 9x + x + 7 - 8 - 4

   = 11x3 - x3 - 7x2 + 11x - 18x + 7 - 12

   = 10x3 - 7x2 - 7x - 5

Page No 7.14:

Question 6:

Add the following:

(i) x−3y−2z5x+7y−8z3x−2y+5z

(ii) 4ab−5bc+7ca−3ab+2bc−3ca5ab−3bc+4ca

ANSWER:

(i)  Required expression = (x - 3y - 2z) + (5x +7y - 8z) +(3x - 2y + 5z)

    Collecting positive and negative like terms together, we get

    x + 5x + 3x - 3y + 7y - 2y - 2z - 8z + 5z

 = 9x - 5y + 7y - 10z + 5z

 = 9x + 2y - 5z

(ii) Required expression = (4ab - 5bc + 7ca) + (- 3ab + 2bc - 3ca ) + (5ab - 3bc + 4ca)

     Collecting positive and negative like terms together, we get

     4ab - 3ab + 5ab - 5bc + 2bc - 3bc + 7ca - 3ca + 4ca

  = 9ab - 3ab - 8bc + 2bc + 11 ca  - 3ca

  = 6ab - 6bc + 8ca

Page No 7.14:

Question 7:

Add 2x2 − 3x + 1 to the sum of 3x2 − 2x and 3x + 7.

ANSWER:

Sum of 3x2 - 2x and 3x + 7

= (3x2 - 2x) + ( 3x +7)

= 3x2 - 2x + 3x + 7

= (3x2 + x  + 7)

Now, required expression = (2x2 - 3x + 1) + (3x2 + x  + 7)

                                           = 2x2 + 3x2 - 3x + x + 1 + 7

                                           = 5x2 - 2x + 8

Page No 7.14:

Question 8:

Add x2 + 2xy + y2 to the sum of x2 − 3y2 and 2x2 − y2+ 9.

ANSWER:

Sum of x2 - 3y2 and 2x2 - y2 + 9

= (x2 - 3y2) + (2x2 - y2 + 9)

= x2 + 2x2 - 3y2 - y2+ 9

= 3x2 - 4y2 + 9

Now, required expression = (x2 + 2xy + y2) + (3x2 - 4y2 + 9)

                                      = x2 + 3x2 + 2xy + y2 - 4y2 + 9

                                      = 4x2 + 2xy  - 3y2 + 9

Page No 7.14:

Question 9:

Add a3 + b3 − 3 to the sum of 2a3 − 3b3 − 3ab + 7 and −a3 + b3 + 3ab −9.

Similar questions