Social Sciences, asked by nidhipurig8326, 7 days ago

Suggest any tow measure to recharge group water level in present day situation

Answers

Answered by siddharth6395
0

Answer:

Groundwater recharge or deep drainage or deep percolation is a hydrologic process, where water moves downward from surface water to groundwater. Recharge is the primary method through which water enters an aquifer. This process usually occurs in the vadose zone below plant roots and, is often expressed as a flux to the water table surface. Groundwater recharge also encompasses water moving away from the water table farther into the saturated zone.[1] Recharge occurs both naturally (through the water cycle) and through anthropogenic processes (i.e., "artificial groundwater recharge"), where rainwater and or reclaimed water is routed to the subsurface.

Processes

Groundwater is recharged naturally by rain and snow melt and to a smaller extent by surface water (rivers and lakes). Recharge may be impeded somewhat by human activities including paving, development, or logging. These activities can result in loss of topsoil resulting in reduced water infiltration, enhanced surface runoff and reduction in recharge. Use of groundwater, especially for irrigation, may also lower the water tables. Groundwater recharge is an important process for sustainable groundwater management, since the volume-rate abstracted from an aquifer in the long term should be less than or equal to the volume-rate that is recharged.

Recharge can help move excess salts that accumulate in the root zone to deeper soil layers, or into the groundwater system. Tree roots increase water saturation into groundwater reducing water runoff.[2] Flooding temporarily increases river bed permeability by moving clay soils downstream, and this increases aquifer recharge.[3]

Artificial groundwater recharge is becoming increasingly important in India, where over-pumping of groundwater by farmers has led to underground resources becoming depleted. In 2007, on the recommendations of the International Water Management Institute, the Indian government allocated ₹1,800 crore (equivalent to ₹46 billion or US$610 million in 2020) to fund dug-well recharge projects (a dug-well is a wide, shallow well, often lined with concrete) in 100 districts within seven states where water stored in hard-rock aquifers had been over-exploited. Another environmental issue is the disposal of waste through the water flux such as dairy farms, industrial, and urban runoff.

Wetlands

Wetlands help maintain the level of the water table and exert control on the hydraulic head.[4] This provides force for groundwater recharge and discharge to other waters as well. The extent of groundwater recharge by a wetland is dependent upon soil, vegetation, site, perimeter to volume ratio, and water table gradient.[5] Groundwater recharge occurs through mineral soils found primarily around the edges of wetlands.[6] The soil under most wetlands is relatively impermeable. A high perimeter to volume ratio, such as in small wetlands, means that the surface area through which water can infiltrate into the groundwater is high.[7] Groundwater recharge is typical in small wetlands such as prairie potholes, which can contribute significantly to recharge of regional groundwater resources.[7] Researchers have discovered groundwater recharge of up to 20% of wetland volume per season.[7]

Depression-focused recharge

If water falls uniformly over a field such that field capacity of the soil is not exceeded, then negligible water percolates to groundwater. If instead water puddles in low-lying areas, the same water volume concentrated over a smaller area may exceed field capacity resulting in water that percolates down to recharge groundwater. The larger the relative contributing runoff area is, the more focused infiltration is. The recurring process of water that falls relatively uniformly over an area, flowing to groundwater selectively under surface depressions is depression focused recharge. Water tables rise under such depressions.

Explanation:

Similar questions