Math, asked by Nakshll, 14 hours ago

sum and product of zeros of a quadratic polynomial are 3 and 6 respectively then find that polynomial ​

Answers

Answered by proxly
32

Answer:

Good morning

The required quadratic polynomial :

x ^{2}  - 3x + 6

Please mark it as the Brainliest.

Answered by WildCat7083
129

Formula Used :-

Quadratic Equation Formula

\begin{gathered}\footnotesize\mapsto\sf\boxed{\bold{\orange{x^2 - (Sum\: of\: roots)x + (Product\: of\: roots) =\: 0}}}\\\end{gathered}

Solution :-

◘ Given :

\bigstar\: \: \: \sf\bold{\red{Sum\: of\: roots\: (\alpha + \beta) =\: 3}}

Hence, the required polynomial equation are :

\begin{gathered}\small\leadsto \sf\bold{\green{x^2 - (Sum\: of\: roots)x + (Product\: of\: roots) =\: 0}}\\\end{gathered}

\begin{gathered}\small\longrightarrow \bf{x^2 - (\alpha + \beta) + (\alpha\beta) =\: 0}\\\end{gathered}

\small\longrightarrow \sf x^2 - (3)x + (6) =\: 0 \\ \small\longrightarrow \sf x^2 - 3x + 6 =\: 0 \\ \small\longrightarrow \sf\bold{\red{x^2 - 3x + 6 =\: 0}}

{\small{\bold{\underline{\therefore\: The\: polynomial\: equation\: is\: x^2 - 3x + 6 =\: 0\: .}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Quadratic Equation with one variable :

✪ The general form of the equation is ax² + bx + c.

[ Note :- ◆ If a = 0, then the equation becomes to a linear equation. ]

◆ If b = 0, then the roots of the equation becomes equal but opposite in sign. ]

◆ If c = 0, then one of the roots is zero. ]

Nature of the roots :

✪ Discriminant (D) = b² - 4ac. Then,

● If b² - 4ac = 0, then the roots are real & equal.

● If b² - 4ac > 0, then the roots are real & unequal.

● If b² - 4ac < 0, then the roots are imaginary & no real roots.

\large \bold{@WildCat7083}

Similar questions