Math, asked by sanofarsumi, 8 months ago

sum of 1st 10 terms of an arithmetic sequence is 350 and sum of find 16th term is 848. write algebraic form of the sum of the sequence​

Answers

Answered by Nereida
29

Answer:-

\sf{S_{10}=350}

\sf{S_{16}=848}

We know that,

\bf{S_{n}=\dfrac{n}{2}(2a+(n-1)d)}

Hence,

\leadsto\sf{S_{10}=\dfrac{10}{2}(2a+(10-1)d)}

\leadsto\sf{350=5(2a+9d)}

\leadsto\sf{\dfrac{350}{5}=(2a+9d)}

\leadsto\sf{70=(2a+9d)}

And,

\leadsto\sf{S_{16}=\dfrac{16}{2}(2a+(16-1)d)}

\leadsto\sf{848=8(2a+15d)}

\leadsto\sf{\dfrac{848}{8}=(2a+15d)}

\leadsto\sf{106=(2a+15d)}

Now, let's find a and d too by elimination method,

\sf{106=(2a+15d)}

\sf{70=(2a+9d)}

_________________________

\sf{36=(6d)}

Hence, d = 6

And, \leadsto\sf{70=(2a+9d)}

\leadsto\sf{70=(2a+9(6))}

\leadsto\sf{70=(2a+54)}

\leadsto\sf{70-54=(2a)}

\leadsto\sf{16=(2a)}

Hence, a = 8

\rule{200}2

Sum of the sequence:-

Sn = n/2 ( 2a + ( n - 1 )6 )

= n/2 ( 2( 8 ) + 6n - 6 )

= n/2 ( 16 + 6n - 6 )

= n/2 ( 10 + 6n )

= n( 5 + 3n )

= 3n² + 5n

\rule{200}2


Anonymous: clapping
Nereida: :D
Answered by Anonymous
40

Given :

  • Sum of 1st 10 terms of an arithmetic sequence is 350.
  • Sum of 1st term of the AP is 848.

To Find :

  • Algebraic form of the sum of the sequence.

Solution :

Let the first term of the AP be a.

Let the common difference of the AP be d.

Case 1 :

Sum of the 1st 10 terms of the AP equals as 350.

We know that the sum of n terms of an AP is given by the formula,

\large{\boxed{\bold{S_n\:=\:\dfrac{n}{2}\:\big[2a\:+(n-1)\:d\:\big]}}}

Equation :

First tens terms adds up to 350.

\longrightarrow \sf{S_{10}\:=\:\dfrac{10}{2}\:\big[2a\:+\:(10-1)d\big]}

\longrightarrow \sf{350\:=\:5\:\big[2a\:+\:(9)d\big]}

\longrightarrow \sf{350\:=\:10a\:+\:45d}

Divide throughout by 5,

\longrightarrow \sf{70=2a+9d\:\:\:(1)}

Case 2 :

16 terms of the AP adds up to 848.

Equation :

\longrightarrow \sf{S_{16}\:=\:\dfrac{16}{2}\:\big[2a+\:(16-1)d\big]}

\longrightarrow \sf{848\:=\:8\:\big[2a\:+\:(15)d\big]}

\longrightarrow \sf{848\:=\:16a\:+\:120d}

Divide throughout by 8,

\longrightarrow \sf{106=2a+15d\:\:(2)}

Substract equation (1) from (2),

\longrightarrow \sf{2a+9d-(2a+15d)=70-(106)}

\longrightarrow \sf{2a+9d-2a-15d=70-106}

\longrightarrow \sf{9d-15d=-36}

\longrightarrow \sf{-6d=-36}

\longrightarrow \sf{d=\dfrac{-36}{-6}}

\longrightarrow \sf{d=6\:\:(3)}

Now, substitute d = 6 in equation (1),

\longrightarrow \sf{70\:=\:2a+9d}

\longrightarrow \sf{70=2a+9(6)}

\longrightarrow \sf{70=2a+54}

\longrightarrow \sf{70-54=2a}

\longrightarrow \sf{16=2a}

\longrightarrow \sf{2a=16}

\longrightarrow \sf{a=\dfrac{16}{2}}

\longrightarrow\sf{a=8\:\:(4)}

Now, from (4) we have the first term of the AP, a = 8

\longrightarrow \sf{t_2\:=\:a+d}

\longrightarrow \sf{t_2=8+6}

\longrightarrow \sf{t_2\:=\:14}

Third term :

\longrightarrow \sf{t_3\:=\:t_2\:+\:d}

\longrightarrow \sf{t_3\:=\:14+6}

\longrightarrow \sf{t_3=\:20}

Fourth Term :

\longrightarrow \sf{t_4\:=\:t_3\:+\:d}

\longrightarrow \sf{t_4\:=\:20+6}

\longrightarrow \sf{t_4=\:26}

Sequence :

\large{\boxed{\bold{8,14,20,26,...t_n}}}

Now, nth term of the AP will be :

\longrightarrow \sf{t_n\:=\:a\:+\:(n-1)d}

\longrightarrow \sf{t_n\:=\:8\:+\:(n-1)6}

\longrightarrow \sf{t_n\:=\:8+6n\:-\:6}

\longrightarrow \sf{t_n\:=\:2\:+\:6n}

° nth term of AP = 2 + 6n.

Sum of the sequence :

\longrightarrow \sf{S_n\:=\:\dfrac{n}{2}\:\big[2a\:+\:(n-1)d\big]}

\longrightarrow \sf{S_n\:=\:\dfrac{n}{2}\:\big[2(8)\:+(n-1)\:(6)\big]}

\longrightarrow \sf{S_n\:=\:\dfrac{n}{2}\:\big[16\:+\:6n-6\big]}

\longrightarrow \sf{S_n\:=\:\dfrac{n}{2}\:(10\:+\:6n)}

\longrightarrow \sf{S_n\:=\:n\:(5\:+\:3n)}

\longrightarrow \sf{S_n\:=\:5n\:+\:3n^2}

Similar questions