Math, asked by sumith9346, 8 months ago

Sum of 4 terms of an appointment is 10 sum of their squares is 30 find the ap

Answers

Answered by Anonymous
5

 \large\bf\underline{Given:-}

  • Sum of 4 terms = 10
  • Sum of squares of terms = 30

 \large\bf\underline {To \: find:-}

  • AP

 \huge\bf\underline{Solution:-}

Let the 4 terms be ,a , a+ d, a+2d ,a+3d

 \underbrace{ \bf \dag \: According \:  to \:  question}

  • Sum of 4 terms = 10

 \dashrightarrow\rm\:a  + ( a + d) + (a + 2d) + (a + 3d) = 10 \\  \\  \dashrightarrow\rm\:4a + 6d = 10 \\  \\  \rm \blacktriangleright \: divide \: both \: side \: by \: 2 \\  \\  \dashrightarrow\rm\:2a + 3d = 5.........(i)

  • Sum of their squares is 30

 \dashrightarrow\rm\: {a}^{2}  + (a + d) {}^{2}  + (a + 2d {)}^{2}  + (a + 3d {)}^{2}  = 30 \\  \\  \dashrightarrow\rm\: {a}^{2}  +  {a}^{2}  +  {d}^{2}  + 2ad +  {a}^{2}  + 4 {d}^{2}  + 4ad +  {a}^{2}  +  {9d}^{2}  + 6ad = 30 \\  \\  \dashrightarrow\rm\:4 {a}^{2}  + 14{d}^{2}  + 12ad = 30 \\  \\ \rm \blacktriangleright \: divide \: both \: side \: by \: 2 \\ \\ \dashrightarrow\rm\:2a {}^{2}  + 7 {d}^{2} +  6ad = 15........(ii)

\rm \blacktriangleright \: squaring \: on \: both \: side \: of \: eq.(i)

\leadsto\rm\:(2a + 3d {)}^{2}  =  {5}^{2}  \\  \\ \leadsto\rm\:4 {a}^{2}  + 9 {d}^{2}  + 12ad = 25........(iii) \\  \\

\rm \dag \: multiplying \: eq.(ii) \: by \: 2 \:  \\  \\ \rm \mapsto \:  ({2a}^{2}  + 7 {d}^{2}  + 6ad = 15 )\times 2 \\  \\ \rm \mapsto \:4 {a}^{2}  + 14 {d}^{2}  + 12ad = 30.......(iv)

Solving eq.(iii)and (iv).

 \rm\cancel{4 {a}^{2}}  + 9 {d}^{2}  +  \cancel{12ad} = 25 \\ \rm \cancel{4 {a}^{2}}  + 14 {d}^{2}  + \cancel{ 12ad} = 30 \\  - \:  \:  \:  \:  \:  \:  \:  \:  \:   -   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: - \:  \:  \:  \:  \:  \:  \:  \:   -  \\ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \:  \:  \:  \:  \:  \rm \:  \:  \:  \:  \:  \:  \:  - 5d {}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   =  - 5 \\  \rm \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  d \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 1

Putting value of d = 1 in eq.(i) ,

\leadsto\rm \: 2a + 3d = 5 \\  \\ \leadsto\rm \: 2a + 3 = 5 \\  \\\leadsto\rm \: 2a = 2 \\  \\  \leadsto\rm \: a = 1

AP will be :-

First term of AP = 1

2nd term of AP a+d = 2

3rd term of AP a+2d = 3

  • AP = 1, 2 , 3....
Similar questions
English, 8 months ago