Math, asked by kavind1305, 9 months ago

sum of first n terms is 3n^{2} /2 +5n/2 .find its first term common difference and its 25th term

Answers

Answered by BrainlyPopularman
5

GIVEN :–

• Sum of n terms  \:   { \bold{ (S_{n}) =  \dfrac{3 {n}^{2} }{2} +  \dfrac{5n}{2}  }} \\

TO FIND :–

• First term (a) = ?

• Common difference(d) = ?

• 25th term = ?

 \\ \rule{220}{2} \\

SOLUTION :–

• We know that nth term of A.P. is –

  \\  \bigstar \:  \large \:  \:    { \green{ \boxed{ \bold{ T_{n} =  a + (n - 1)d }}}} \\

• So that –

  \\  \longrightarrow \:  \:   { \bold{ T_{1} =  a }} \\

  \\  \longrightarrow \:  \:   { \bold{ T_{2} =  a + d }} \\

▪︎ Now using –

  \\ \implies   { \bold{ S_{n} =  \dfrac{3 {n}^{2} }{2} +  \dfrac{5n}{2}  }} \\

• Put n = 1 –

  \\ \implies   { \bold{ S_{1} =  T_{1} = a  = \dfrac{3 {(1)}^{2} }{2} +  \dfrac{5(1)}{2}   }} \\

  \\ \implies   { \bold{ S_{1} =  T_{1} = a  = 4  -----eq.(1)}} \\

  \\ \implies  \large  {  \red{ \boxed{ \bold{  a  = 4 }}}} \\

• Put n = 2 –

  \\ \implies   { \bold{ S_{2} =   T_{1} + T_{2}   = \dfrac{3 {(2)}^{2} }{2} +  \dfrac{5(2)}{2}   }} \\

  \\ \implies   { \bold{ S_{2} =   T_{1} + T_{2}   = 6 \: +   5 = 11}} \\

• Put n = 3 –

  \\ \implies   { \bold{ S_{3} =   T_{1} + T_{2}   +  T_{3} = \dfrac{3 {(3)}^{2} }{2} +  \dfrac{5(3)}{2}   }} \\

  \\ \implies   { \bold{ S_{3} =   T_{1} + T_{2}   +  T_{3} =  \dfrac{27}{2}   +  \dfrac{15}{2} = 21}} \\

• Now let's calculate –

  \\ \implies   { \bold{ S_{2} -  S_{1}  = ( T_{2} + T_{1})  - (T_{1})}} \\

  \\ \implies   { \bold{ 11 -  4  = T_{2} }} \\

  \\ \implies   { \bold{ T_{2} = 7 }} \\

  \\ \implies   { \bold{a + d = 7 \:  \:  \:  \:  \:  \: [  \: \because  \:  \: T_{2} = a + d]}} \\

  \\ \implies   { \bold{4 + d = 7 \:  \:  \:  \:  \:  \: [  \: using \:  \: eq.(1)]}} \\

  \\ \implies  \large  { \red{ \boxed{ \bold{ d = 3}}}} \\

▪︎ Now 25th term –

  \\  \implies\:  \:    { \bold{ T_{25} =  a + (25 - 1)d }} \\

  \\  \implies\:  \:    { \bold{ T_{25} =  4 + (25 - 1)3 }} \\

  \\  \implies\:  \:    { \bold{ T_{25} =  4 + 24  \times 3 }} \\

  \\  \implies\:  \:    { \bold{ T_{25} =  4 + 72}} \\

  \\  \implies\:   \:   \large  { \red{ \boxed{ \bold{ T_{25} =  76}}}} \\

 \\ \rule{220}{2} \\

Answered by Anonymous
1

plz refer to this attachment

Attachments:
Similar questions