Math, asked by AsifAhamed4, 1 year ago

Sum of first p, q, r terms of an A. P are a,b,c respectively.

SHOW THAT :

 \frac{a}{p} (q - r) +  \frac{b}{q} ( r - p) +  \frac{c}{r}(p - q) = 0
❌NO SPAM ❌

BEST ANSWER WILL BE MARKED AS BRAINLIEST! ✔️

Answers

Answered by siddhartharao77
8

Note: Sum of n terms = (n/2)[2a + (n - 1) * d].

Let the first term be A and the common difference be d.

(i)

Given sum of p terms = a.

⇒ (p/2)[2A + (p - 1) * d] = a

⇒ (a/p) = (1/2)[2A + (p - 1) * d]


(ii)

Given sum of q terms is b.

⇒ (q/2) = 2A + (q - 1) * d = b

⇒ (q/p) = (1/2)[2A + (q - 1) * d]


(iii)

Given sum of r terms of an AP is c.

⇒ (r/2)[2A + (r - 1) * d] = c

⇒ (r/c) = (1/2)[2A + (r - 1) * d]


(iv)

On subtracting (ii) from (i), we get

=>\frac{a}{p} -\frac{b}{q} =\frac{1}{2} (p - 1)d -(q - 1)d

=>\frac{a}{p}-\frac{b}{q}=\frac{1}{2}[(p - q) *d]

=> p-q=\frac{2}{d}[\frac{a}{p}-\frac{b}{q}]


(v)

On subtracting (iii) from (ii), we get

=>\frac{b}{q}-\frac{c}{r}=\frac{1}{2}[(q-1)d-(r-1)d]

=>\frac{b}{q}-\frac{c}{r}=\frac{1}{2}(q-r)d

=>q-r=\frac{2}{d}[ \frac{b}{q}-\frac{c}{r}]


(vi)

on subtracting (iii) from (i), we get

=>\frac{c}{r}-\frac{a}{p}=\frac{1}{2}(r-p)d

=>r-p =\frac{2}{d}[ \frac{c}{r}- \frac{a}{p}]


Now,

Given Equation is (a/p)(q - r) + (b/q)(r - p) + (c/r)(p - q) = 0

=>\frac{a}{q}[\frac{2}{d}(\frac{b}{q}- \frac{c}{r})]+\frac{b}{q}[\frac{2}{d}(\frac{c}{r}-\frac{a}{p})]+\frac{c}{r}[\frac{2}{d}( \frac{a}{p}-\frac{b}{q})]

=>\frac{2}{d}[\frac{ab}{pq}- \frac{ac}{pr}+\frac{bc}{qr}-\frac{ab}{pq}+\frac{ac}{pr}-\frac{bc}{qr}]

=>0.



Hope it helps!


AsifAhamed4: awesome explanation!
siddhartharao77: thanks
Anonymous: Awesome
siddhartharao77: Thank you!
Similar questions