Math, asked by aditiraj341, 1 year ago

Sum of the area of two square is 468 meter square. If there differences of their parameters is 24m .find its side.

Answers

Answered by RoushanKumarSingh
1

Let two side be s and s' m.

A/Q

s^2+s'^2=468m^2. -----(i)

4s-4s'=24m

4(s-s')=24

s-s'=6

s=6+s'. ------(ii)

Putting value of s in I from ii.

(6+s')^2+s'^2=468

36+s'^2+12s'+s'^2=468

2s'^2+12s'-432=0

2(s'^2+6s'-216)=0

s'^2+18s'-12s'-216=0

s'(s'+18)-12(s'+18)=06+12

(s'+18)(s'-12)=0

,', s'=12 m

And, s = 6+12 =18m

Answered by Anonymous
0

Step-by-step explanation:

Answer:

→ 18m and 12 m .

Step-by-step explanation:

Let the sides of two squares be x m and y m respectively .

Case 1 .

→ Sum of the areas of two squares is 468 m² .

A/Q,

∵ x² + y² = 468 . ...........(1) .

[ ∵ area of square = side² . ]

Case 2 .

→ The difference of their perimeters is 24 m .

A/Q,

∵ 4x - 4y = 24 .

[ ∵ Perimeter of square = 4 × side . ]

⇒ 4( x - y ) = 24 .

⇒ x - y = 24/4.

⇒ x - y = 6 .

∴ y = x - 6 ..........(2) .

From equation (1) and (2) , we get

∵ x² + ( x - 6 )² = 468 .

⇒ x² + x² - 12x + 36 = 468 .

⇒ 2x² - 12x + 36 - 468 = 0 .

⇒ 2x² - 12x - 432 = 0 .

⇒ 2( x² - 6x - 216 ) = 0 .

⇒ x² - 6x - 216 = 0 .

⇒ x² - 18x + 12x - 216 = 0 .

⇒ x( x - 18 ) + 12( x - 18 ) = 0 .

⇒ ( x + 12 ) ( x - 18 ) = 0 .

⇒ x + 12 = 0 and x - 18 = 0 .

⇒ x = - 12m [ rejected ] . and x = 18m .

∴ x = 18 m .

Put the value of 'x' in equation (2), we get

∵ y = x - 6 .

⇒ y = 18 - 6 .

∴ y = 12 m . ......

Hence, sides of two squares are 18m and 12m respectively .

Similar questions