Sum of the areas of two squares is 260 m². If the difference of their perimeters is 24 m, find the sides of the two squares.
Hey peeps ! Please drop some thanks.
Answers
Answer:
The sides of the two squares are 14 m & 8 m.
Step-by-step-explanation:
Let the sides of the two squares be x m and y m.
Now, we know that,
Area of square = ( Side )²
∴ Area of first square = x² m
Area of other square = y² m
From the first condition,
x² + y² = 260
⇒ x² = 260 - y²
⇒ x² = - y² + 260 - - - ( 1 )
Now, we know that,
Perimeter of square = 4 * Side
∴ Perimeter of first square = 4x m
Perimeter of other square = 4y m
From the second condition,
4x - 4y = 24
⇒ x - y = 6 - - - [ Dividing each term by 4 ]
⇒ x = 6 + y
⇒ x = y + 6 - - - ( 2 )
⇒ x² = ( y + 6 )² - - - [ Squaring both sides ]
⇒ x² = y² + 2 * y * 6 + 6² - - - [ ( a + b )² = a² + 2ab + b² ]
⇒ x² = y² + 12y + 36
⇒ - y² + 260 = y² + 12y + 36 - - - [ From ( 1 ) ]
⇒ y² + 12y + 36 = - y² + 260
⇒ y² + 12y + 36 + y² - 260 = 0
⇒ 2y² + 12y - 224 = 0
⇒ y² + 6y - 112 = 0 - - - [ Dividing each term by 2 ]
⇒ y² + 14y - 8y - 112 = 0
⇒ y ( y + 14 ) - 8 ( y + 14 ) = 0
⇒ ( y + 14 ) ( y - 8 ) = 0
⇒ ( y + 14 ) = 0 OR ( y - 8 ) = 0
⇒ y + 14 = 0 OR y - 8 = 0
⇒ y = - 14 OR y = 8
As the length of square can't be negative, y = - 14 is unacceptable.
∴ y = 8 m
Now,
x = y + 6 - - - ( 2 )
⇒ x = 8 + 6
⇒ x = 14 m
∴ The sides of the two squares are 14 m & 8 m.