Math, asked by sonali5829, 11 months ago

Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, find the sides of the two squares.​

Answers

Answered by Anonymous
75

\Large{\underline{\underline{\mathfrak{\green{\bf{Question}}}}}}

Sum of the areas of two squares is 468 m². If the difference of their perimeters is 24 m, find the sides of the two squares.

\Large{\underline{\underline{\mathfrak{\green{\bf{Solution}}}}}}

\Large{\underline{\mathfrak{\bf{Given}}}}

  • Sum of the areas of two squares is 468 m²
  • the difference of their perimeters is 24 m

\Large{\underline{\mathfrak{\bf{Find}}}}

  • side of both squares

\Large{\underline{\underline{\mathfrak{\green{\bf{Explanation}}}}}}

Let,

  • Side of first square = x meter.
  • Side of second square = y meter.

★ Area of first square = x² meter²

★ Area of second square = y² meter²

A/C to question,

( Sum of the areas of two squares is 468 m2 )

\small\sf{\:(area\:of\:first\:square)+(area\:of\:second\:square)\:=\:468}

\mapsto\sf{\:(x^2+y^2)\:=\:468.......(1)}

______________________

★ perimeter of first square = 4x meter

★ perimeter of second square = 4y meter

Again, A/C to question,

( the difference of their perimeters is 24 m)

\small\sf{\:( perimeter\:of\:first\:square )\:+\:( perimeter\:of\:second\:square)\:=\:24}

\mapsto\sf{\:(4x-4y)\:=\:24}

\mapsto\sf{\:4(x-y)\:=\:24}

\mapsto\sf{\:(x-y)\:=\:\dfrac{\cancel{24}}{\cancel{4}}}

\mapsto\sf{\:(x-y)\:=\:6......(2)}

______________________

We Know,

★ (a-b)² = a² + b² - 2ab

So,

\mapsto\sf{\:(x-y)^2\:=\:x^2+y^2-2xy}

\:\:\:\:\:\small\sf{\:( keep\:value\:by\:(1)\:and\:(2) )}

\mapsto\sf{\:(6)^2\:=\:468-2xy}

\mapsto\sf{\:-2xy\:=\:36-468}

\mapsto\sf{\:2xy\:=\:432......(3)}

______________________

We know,

\sf{\:(x+y)\:=\:\sqrt{(x - y)^2+4xy}}

\:\:\:\:\:\small\sf{\:( keep\:value\:by\:(2)\:and\:(3) )}

\mapsto\sf{\:(x+y)\:=\:\sqrt{(6)^2+2\times (432)}}

\mapsto\sf{\:(x+y)\:=\:\sqrt{(36+864)}}

\mapsto\sf{\:(x+y)\:=\:\sqrt{(900)}}

\mapsto\sf{\:(x+y)\:=\:30........(4)}

_____________________

addition of equ (2) and (4)

\mapsto\sf{\:2x\:=\:36}

\mapsto\sf{\:x\:=\:\dfrac{\cancel{36}}{\cancel{2}}}

\mapsto\sf{\:x\:=\:18}

______________________

Keep value of x in equ(1) ,

\mapsto\sf{\:18-y\:=\:6}

\mapsto\sf{\:y\:=\:-6+18}

\mapsto\sf{\:y\:=\:12}

______________________

Thus:-

  • Side of first square = 18 meter
  • Side of second square = 12 meter

______________________

\Large{\underline{\underline{\mathfrak{\green{\bf{Answer Verification}}}}}}

( Sum of the areas of two squares is 468 m² )

\small\sf{\:(area\:of\:first\:square)+(area\:of\:second\:square)\:=\:468}

\mapsto\sf{\:(18)^2\:+\:(12)^2\:=\:468}

\mapsto\sf{\:324+144\:=\:468}

\mapsto\sf{\:468\:=\:468}

L.H.S.=R.H.S.

______________________

Again,

( the difference of their perimeters is 24 m)

\small\sf{\:( perimeter\:of\:first\:square )\:+\:( perimeter\:of\:second\:square)\:=\:24}

\mapsto\sf{\:4\times 18\:-\:4\times 12\:=\:24}

\mapsto\sf{\:72\:-\:48\:=\:24}

\mapsto\sf{\:24\:=\:24}

L.H.S. = R.H.S

_____________________

so, we can say that our solution is absolutely correct

______________________

Answered by JanviMalhan
167

Given :

Sum of areas of 2 squares = 468m²

The difference of their perimeter = 24cm

To Find:

The sides of the two square

Solution:

Let the sides of two squares be x m and y m respectively .

Case 1 .

→ Sum of the areas of two squares is 468 m² .

A/Q,

∵ x² + y² = 468 . ...........(1) .

[ ∵ area of square = side² . ]

Case 2 .

→ The difference of their perimeters is 24 m .

A/Q,

∵ 4x - 4y = 24 .

[ ∵ Perimeter of square = 4 × side . ]

⇒ 4( x - y ) = 24 .

⇒ x - y = 24/4 .

⇒ x - y = 6 .

∴ y = x - 6 ..........(2) .

From equation (1) and (2) , we get

∵ x² + ( x - 6 )² = 468 .

⇒ x² + x² - 12x + 36 = 468 .

⇒ 2x² - 12x + 36 - 468 = 0 .

⇒ 2x² - 12x - 432 = 0 .

⇒ 2( x² - 6x - 216 ) = 0 .

⇒ x² - 6x - 216 = 0 .

⇒ x² - 18x + 12x - 216 = 0 .

⇒ x( x - 18 ) + 12( x - 18 ) = 0 .

⇒ ( x + 12 ) ( x - 18 ) = 0 .

⇒ x + 12 = 0 and x - 18 = 0 .

⇒ x = - 12m [ rejected ] . and x = 18m .

∴ x = 18 m

Put the value of 'x' in equation (2), we get

∵ y = x - 6 .

⇒ y = 18 - 6 .

∴ y = 12 m .

Similar questions