Math, asked by laddi84, 1 year ago

sum of the digit of a 2- digit number is 8 if the digit of the number reversed the number remaining the same find the number
l

Answers

Answered by IITGENIUS1234
3

<b><u>Given :-</u></b>

Sum of the digit of a 2 - digit number is 8.

⇒x + y = 8 ....... ( i )

If the digits are reversed, the number remains the same.

<b>Let the number be 10x + y</b>

\rule{330}{5}

<b><u>To Find :-</u></b>

The number

\rule{330}{5}

<b><u>Solution  :-</u></b>

When the number is reversed, the number becomes <b>10y + x <b>

According to the problem,

⇒ 10x + y = 10y + x

⇒ 10x + y - x - 10y = 0

⇒ 9x - 9y = 0

⇒ 9 ( x - y ) = 0

⇒ x - y = 0 ....... ( ii )

Adding eq ( i ) from eq ( ii ),

x + y = 8

x - y = 0

_____________________

2x = 8

⇒ x = 4

Substituting value of x in eq ( i ),

x + y = 8

⇒ 4 + y = 8

⇒ y = 8 - 4

⇒ y = 4

•°• The Number = 10x + y

= 10 × 4 + 4

= 44

<b>•°• The Required Number is 44</b>

Similar questions