Sum of the digits of a two-digit number is 11. The given number is less than the number obtained by interchanging the digits by 9. Find the number.
Answers
Answered by
2
《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》
▪Given :-
\bf y = [log \{log(logx) \}] {}^{2}y =[log{log(logx)}]
2
___________________________
▪To Calculate :-
\bf \large \color{magenta}{dy/dx}dy/dx
___________________________
▪Formulae Used :-
\begin{gathered} \bigstar \: \bf \frac{d}{dx} f(x) {}^{2} = 2f(x) \frac{d}{dx} f(x) \\ \\ \bigstar \bf\frac{d}{dx} log(f(x)) = \frac{1}{f(x)} . \frac{d}{dx} f(x)\end{gathered}
★
dx
d
f(x)
2
=2f(x)
dx
d
f(x)
★
dx
d
log(f(x))=
f(x)
1
.
dx
d
f(x)
___________________________
▪Solution :-
\bf y = [log \{log(logx) \}] {}^{2}y =[log{log(logx)}]
2
Differentiating both side w.r.t x
\begin{gathered} \bf\frac{dy}{dx} = \frac{d}{dx} [log \{log(logx) \}] {}^{2} \\ \\ = \sf2[log \{log(logx) \}] .\frac{d}{dx} [log \{log(logx) \}] \\ \\ = \sf 2[log \{log(logx) \}] \times \frac{1}{ \{log(log \: x) \} } \\ \times \sf\frac{ d}{dx} \{log{(log \: x)} \} \\ \\ = \sf 2[log \{log(logx) \}] \times \frac{1}{ \{log(log \: x) \} } \\ \times \sf\frac{1}{log \: x} \times \frac{d}{dx}log \: x \\ \\ = \sf 2[log \{log(logx) \}] \times \frac{1}{ \{log(log \: x) \} } \\ \times \sf\frac{1}{log \: x} \times \frac{1}{x}\\\\ \colorbox{lime}{ \underline{\boxed{\bf \frac{dy}{dx}=\frac{2[log \{log(logx)\}]}{x log \: x.\{log(log \: x)\} }}}} \end{gathered}
dx
dy
=
dx
d
[log{log(logx)}]
2
=2[log{log(logx)}].
dx
d
[log{log(logx)}]
=2[log{log(logx)}] ×
{log(logx)}
1
×
dx
d
{log(logx)}
=2[log{log(logx)}] ×
{log(logx)}
1
×
logx
1
×
dx
d
logx
=2[log{log(logx)}] ×
{log(logx)}
1
×
logx
1
×
x
1
dx
dy
=
xlogx.{log(logx)}
2[log{log(logx)}]
\begin{gathered} \Large \color{purple}\mathfrak{ \text{W}hich \: \: is \: \: the \: \: required }\\ \huge \color{navy} \mathfrak{ \text{ A}nswer.}\end{gathered}
Which is the required
Answer.
___________________________
Answered by
2
Answer:
56
Step-by-step explanation:
The given number is less than the number obtained by interchanging the digits by 9. Therefore, (10x+y)−(10y+x)=9. Putting the value of x in x+y=11, we get y=11−x=11−6=5. The number was 56.
Similar questions