Math, asked by anshu1815, 6 months ago

sum of the digits of a two-digit number is 5 when the digits are reversed the resulting number is greater than the original number by 27 find the number​

Answers

Answered by TheProphet
44

S O L U T I O N :

Let the ten's place digit be x & one's place digit be y respectively.

\boxed{\bf{Original\:number = 10x + y}}

\boxed{\bf{Reversed\:number = 10y + x}}

A/q

\underbrace{\sf{1^{st}\:Case\::}}

\longrightarrow\tt{x + y = 5}

\longrightarrow\tt{ y = 5 - x..............(1)}

\underbrace{\sf{2^{nd}\:Case\::}}

\longrightarrow\tt{10y + x  = 10x + y + 27}

\longrightarrow\tt{10y - y + x - 10x = 27}

\longrightarrow\tt{9y-9x = 27}

\longrightarrow\tt{9(y-x) = 27}

\longrightarrow\tt{(y-x) = \cancel{27/9}}

\longrightarrow\tt{y-x = 3}

\longrightarrow\tt{5-x-x = -3\:\:[from(1)]}

\longrightarrow\tt{5-2x = 3}

\longrightarrow\tt{-2x = 3 - 5}

\longrightarrow\tt{-2x = -2}

\longrightarrow\tt{x = \cancel{-2/-2}}

\longrightarrow\bf{x = 1}

Putting the value of x in equation (1),we get;

\longrightarrow\tt{y = 5-1}

\longrightarrow\bf{y = 4}

Thus,

→ The number = 10x + y

→ The number = 10(1) + 4

→ The number = 10 + 4

The number = 14 .


prince5132: Awesome !
Answered by abhinavraj980161
33

Answer:-

Let the digit in the unit place be 'y' and 'x' in the tens digit place .

Hence,The original number is 10x+y......(i)

Case 1 :-

x+y=5

y=5-x....(ii)

Case 2 :-

 \blue{10y + x = 10x + y + 27}

 \blue{10y - y = 10x - x + 27}

 \blue{9y = 9x + 27}

Dividing throughout by 9 we get :-

 \red{y = x + 27}

 \red{5 - x = x + 27.....(from \: it)}

 \red{5 - 27 = x + x}

 \red{2x =  - 22}

 \red{x =  \frac{ - 22}{2}}

 \red{x =  - 11}

Substituting x=-11 in.... (ii)

 \green{y = 5 - ( - 11)}

 \green{y = 5 + 11}

 \green{y = 16}

 \purple{now \: subsituting \: x =  - 11......(1)}

 \purple{and \: y = 16......(1)}

Original number⤵️⤵️⤵️⤵️⤵️

 \pink{10( - 11) + 16 \: }

 \pink{ - 110 + 16}

 \pink{ =  - 94}

Hence,The number is -94

Hope this helps you ✌✌

Similar questions