Math, asked by georgeedvin, 8 months ago

Sum of the digits of a two-digit number is 9. The number obtained by interchanging
the digits exceeds the given number by 27. Find the original number.​

Answers

Answered by TheProphet
5

Solution :

We suppose the ten's place digit be r & one's place digit be m respectively;

\boxed{\bf{Original\:number=10r+m}}

\boxed{\bf{Reversed\:number=10m+r}}

\underline{\underline{\tt{According\:to\:the\:question\::}}}

\underbrace{\bf{1^{st}\:Condition\::}}

\mapsto\tt{r+m=9}

\mapsto\tt{r=9-m......................(1)}

\underbrace{\bf{2^{nd}\:Condition\::}}

\mapsto\tt{(Interchange\:number) =(Original\:number) +27}

\mapsto\tt{10m+r = 10r + m + 27}

\mapsto\tt{10m-m + r-10r =  27}

\mapsto\tt{9m -9r =  27}

\mapsto\tt{9(m-r) =  27}

\mapsto\tt{m-r =  \cancel{27/9}}

\mapsto\tt{m-r =3}

\mapsto\tt{m-(9-m) = 3\:\:\:\:[from(1)]}

\mapsto\tt{m-9+m=3}

\mapsto\tt{2m=3+9}

\mapsto\tt{2m=12}

\mapsto\tt{m=\cancel{12/2}}

\mapsto\bf{m=6}

∴ Putting the value of m in equation (1),we get;

\mapsto\tt{r=9-6}

\mapsto\bf{r=3}

Thus;

The original number = 10r + m

The original number = 10(3) + 6

The original number = 30 + 6

The original number = 36 .


Anonymous: Awesome ♥️♥️♥️ LaTeX use
Similar questions