Math, asked by mejabinkousara, 10 months ago

Sum of the digits of a two-digit number is 9. When we interchange the digits, it is
found that the resulting new number is greater than the original number by 27. What
is the two-digit number?​

Answers

Answered by srinugandla2014
3

Answer:

92 or 29

Step-by-step explanation:

Sum of the 2digit n.o = 9

new n.o=greater than o.no by 27

if the n.o is 10x +1y= 9.........eq 1

(1y +10x)=27....eq 2 interchange

now EQ 2-EQ 1,

(1y + 10x)=27

(10x+1y)=9

- 9y+9x=18

xy=18

18 can be written as 9×2 or 2×9

we can take the n.o as 92 or 29

Answered by Anonymous
17

AnswEr :

\:\bullet\:\sf\ Let \: the \: one's \: place \: digit \: be \: \bf\ y

\:\bullet\:\sf\ Let \: the \: ten's \: place \: digit \: be \: \bf\ x

 \rule{100}1

\normalsize\star{\underline{\boxed{\sf{Original \: number = (10 \times\ ten's \: place \: digit + one's \: place \: digit) }}}}

\normalsize\sf\quad\ Hence, \: Original \: number = 10x + y

\normalsize\star{\underline{\boxed{\sf{Reversing  \: number = (10 \times\ one's \: place \: digit + ten's \: place \: digit) }}}}

\normalsize\sf\quad\ Hence, \: Reversing \: number = 10y + x

\underline{\dag\:\textsf{According \: to  \: question \: now:}}

\normalsize\twoheadrightarrow\sf\ Sum \: of \: two \: digit \: number = 9

\normalsize\twoheadrightarrow\sf\ (x + y) = 9 \: \quad\ ---(eq.1)

\normalsize\twoheadrightarrow\sf\ Reversing number = (Original number + 27)

\normalsize\twoheadrightarrow\sf\ 10y + x  = (10x + y  + 27)

\normalsize\twoheadrightarrow\sf\ 10y + x  = 10x + y  + 27

\normalsize\twoheadrightarrow\sf\ 9x - 9y  =  -27

\scriptsize\sf{\: \: \: \: \: \: \: \: \: \dag\ Take \: 9 \: common \: from \: L.H.S}

\normalsize\twoheadrightarrow\sf\  9(x - y)   = -27

\normalsize\twoheadrightarrow\sf\ (x - y)   =\frac{\cancel{-27}}{\cancel{9}}

\normalsize\twoheadrightarrow\sf\ (x - y) = -3 \: \quad\ ---(eq.2)

\underline{\dag\:\textsf{From \: equation \: 1 \: and \: 2 :}}

\normalsize\twoheadrightarrow\sf\ x + \cancel{y} = 9

\normalsize\twoheadrightarrow\sf\ x - \cancel{y}  = -3

 \rule{200}1

\normalsize\twoheadrightarrow\sf\ 2x = 6

\normalsize\twoheadrightarrow\sf\ x = \frac{6}{3}

\normalsize\twoheadrightarrow\sf\red{x = 3}

\normalsize\sf\ Putting \: the \: value \: of \: x \: in \: eq.1

\normalsize\twoheadrightarrow\sf\ x + y = 9

\normalsize\twoheadrightarrow\sf\ 3 + y = 9

\normalsize\twoheadrightarrow\sf\red{y = 6}

 \rule{100}1

\underline{\dag\:\textsf{Calculation \: of \: Original \: number :}}

\normalsize\dashrightarrow\sf\ Original_{no} = 10x + y

\normalsize\dashrightarrow\sf\ Original_{no} = 10 \times\ 3 + 6

\normalsize\dashrightarrow\sf\ Original_{no} = 30 + 6

\normalsize\dashrightarrow\sf\ Original_{no} = 36

\normalsize\maltese\: \: {\underline{\boxed{\sf \green{ Original \: number = 36}}}}

Similar questions