Math, asked by shailendrayadavsibgh, 1 year ago

Sum of the digits of two digit number is 9. If 27 is added to the number the digits get reversed. Find the number.​

Answers

Answered by harshtanwar80
64

Answer: Number=36

Step-by-step explanation:

x+y=9 ......1

From 2nd

10x+y+27=10y+x

Solving

x-y=-3 .........2

Solving 1 and 2

x+y=9and x-y=-3

x=3andy=6

So,number=10x+y=10(3)+(6)

=36

Answered by StarrySoul
92

\mathfrak{\huge{\underline{Solution:}}}

\textbf{\huge{\underline{Given:}}}

● Sum of two digits = 9

● After adding 27 the digits get reversed

________________________________

\star Let the digit at units place be x and the digit at tens place be y.

 \rm \: x + y = 9.......eq.(i)

[ If the digit of a two-digit number are x(ones) and y(tens),then the required number is 10y+x]

 \hookrightarrow \rm \:( 10x + y)  + 27 = 10y + x

 \hookrightarrow \:  \rm \: 10x - x + y - 10y =  - 27

 \hookrightarrow \rm9x - 9y =  - 27

 \hookrightarrow \rm9(x - y) =  - 27

 \hookrightarrow \rm 9x - 9y =  - 27.......eq.(ii)

Multiplying 9 to the equation(i) on both sides.

 \hookrightarrow \rm \: 9(x + y) = 9(27)

 \hookrightarrow \rm \: 9x + 9y =81........(eq.iii)

Adding eq.(ii) and eq.(iii)

 \hookrightarrow \rm \: 9x-  9y + 9x + 9x = 81 - 27

 \hookrightarrow \rm18x = 54

 \hookrightarrow \rm \: x =  \dfrac{54}{18}

 \hookrightarrow \rm \: x =  \large \boxed{3}

Putting the value of x = 3 in eq.(i)

 \hookrightarrow \rm \: x + y = 9

 \hookrightarrow \rm3 + y  = 9

 \hookrightarrow \rm \: y = 9 - 3

 \hookrightarrow \rm y =  \large \boxed{6}

Hence,The number is 36

Similar questions