Math, asked by charishu06, 10 months ago

Sum of the first 8termof an ap is 100 first 19tream is 551 find the sum of 25 terms




Full answer



Wrong answer will be reported

Answers

Answered by Anonymous
16

Answer:

Sn = n/2 {2a + (n - 1) d}

S8 = 8/2 {2a + (8-1)d}

100 × 2 = 8{ 2a + 7d}

200÷ 8 = 2a + 7d

25 = 2a + 7d

2a + 7d = 25 ---> 1

S19 = 19/2 {2a + (19 - 1)d}

551 = 19/2 {2a + 18d }

551×2÷19 = 2a + 18d

2a + 18d = 58 ----> 2

solving 1 & 2

2a + 18d = 58

2a + 7d = 25

- - -

---------------

11d = 33

d = 33÷11

d = 3

substitute the value of d = 3 in equation 1

2a + 7d = 25

2a + 7(3) = 25

2a + 21 = 25

2a = 25 - 21

2a = 4

a = 4/2

a = 2

a25 = 25/2 {2(2) + (25 - 1)3}

a25 = 25/2 {4 + 24(3)}

a25 = 25/2 {76}

a25 = 25 × 38

a25 = 950

Mark it as a brainliest answer ☺️

Thank you ❣️

Answered by BrainlyPopularman
31

GIVEN :

Sum of first 8 terms of an A.P. is 100.

• Sum of first 19 terms of an A.P. is 551.

TO FIND :

Sum of first 25 terms = ?

SOLUTION :

• We know that sum of n terms is –

 \\ \:  \:  \bigstar   \:  \:  \:  \:  \large { \green{ \boxed{ \bold{ S_{n} =  \dfrac{n}{2}  [ 2a + (n - 1)d ]}}}}

• According to first condition –

 \\ \implies { \bold{ S_{8} =  100}}

 \\ \implies { \bold{ \dfrac{8}{2}[2a + (8 - 1)d]=  100}}

 \\ \implies { \bold{ 4(2a + 7d)=  100}}

 \\ \implies { \bold{ 2a + 7d=  25 \:  \:  \:  \:  \:  -  -  -  - eq.(1)}}

• According to second condition –

 \\ \implies { \bold{ S_{19} =  551}}

 \\ \implies { \bold{ \dfrac{19}{2}[2a + (19 - 1)d]=  551}}

 \\ \implies { \bold{ (2a + 18d)=  58}}

 \\ \implies { \bold{ (25 - 7d)+ 18d=  58  \:  \:  \:  \:[  \: using \:  \: eq.(1)]}}

 \\ \implies { \bold{ 25 + 11d=  58 }}

 \\ \implies { \bold{ 11d=  58  - 25}}

 \\ \implies { \bold{ 11d= 33 }}

 \\ \implies  \large{ \red{ \boxed{ \bold{ d= 3} }}}

• Now put the value of 'd' in eq.(1)

 \\ \implies { \bold{ 2a + 7(3)=  25 }}

 \\ \implies { \bold{ 2a + 21=  25 }}

 \\ \implies { \bold{ 2a =  25  - 21}}

 \\ \implies { \bold{ a =  \cancel \dfrac{4}{2} }}

 \\ \implies  \large{ \red{ \boxed{ \bold{ a= 2} }}}

• So that , sum of first 25 terms is –

 \\ \implies{ \bold{ S_{25} =  \dfrac{25}{2}  [ 2(2) + (25 - 1)3 ]}}

 \\ \implies{ \bold{ S_{25} =  \dfrac{25}{2}  [ 4 + 24 \times 3 ]}}

 \\ \implies{ \bold{ S_{25} =  \dfrac{25}{2}  [ 4 +72]}}

 \\ \implies{ \bold{ S_{25} =  \dfrac{25}{2}  (76)}}

 \\ \implies{ \bold{ S_{25} =  25  \times 38}}

 \\ \implies \large{ \red{ \boxed{ \bold{ S_{25} =  950}}}}

Hence , Sum of first 25 terms = 950.

Similar questions