Math, asked by sjshhshw6036, 8 months ago

Sum of two number is 25 and product is 25.find two numbers

Answers

Answered by ankitphanzira
1

Answer:

Step-by-step explanation:

sum=25

let one no.=x

other no.25-x

product=25

(x*25-x)=25

x^2-25x=25

x^2-25x-25=0

Answered by amansharma264
1

Answer:

value \: of \: a \:  =  \:  \frac{10}{(5 +  \sqrt{21)} } \\  \\ value \: of \: b =  \frac{5(5 +  \sqrt{21)} }{2}

Step-by-step explanation:

sum \: of \: two \: number \: is = 25 \\ product \: of \: two \: number = 25 \\ let \: the \: number \: be \: = a \: and \: b \\ a + b = 25.........(1) \\ ab = 25......(2) \\ from \: second \: equation \: we \: get \\ a =  \frac{25}{b} \\ put \: this \: value \: in \: equation \: (1) \\  \frac{25}{b} + b = 25 \\  \frac{25 +  {b}^{2} }{b} = 25 \\ 25 +  {b}^{2} = 25b \\  {b}^{2} - 25b + 25 = 0 \\ d =  {b}^{2} - 4ac = 0 \\ ( - 25) {}^{2} - 4(1)(25) = 0 \\ 625 - 100 = 0 \\ 525 = d \\ x =  \frac{ - b +  \sqrt{d} }{2a} \\ x = \frac{ - ( - 25) +  \sqrt{525} }{2} \\ x =  \frac{25 + 5 \sqrt{21} }{2} \\  \frac{5(5 +  \sqrt{21)} }{2} = b \\ put \: the \: value \: of \: b \: in \: equation \: (2) \\ we \: get \\ a = \frac{25}{b} \\ a =  \frac{25}{ \frac{5(5 +  \sqrt{21)} }{2} } \\ a = \frac{50}{5(5 +  \sqrt{21)} } \\ a =  \frac{10}{(5 +  \sqrt{21)} }

Similar questions