Sum to n terms the series
3 sin a + 5 sin 2a + 7 sin 3a +.......
Answers
3Sina + 5Sin2a + 7Sin3a +..........................to n terms = (Sina + (2n+3)Sin(na) - (2n+1)Sin(n+1)a ) / 4Sin²(a/2)
Step-by-step explanation:
Correct question is
3Sina + 5Sin2a + 7Sin3a +..........................to n terms
n term = (2n+1)Sin(na)
Let say Sum = S
S = 3Sina + 5Sin2a + 7Sin3a +..........................+ (2n+1)Sin(na)
Let say
C = 3Cosa + 5Cos2a + 7Cos3a +..........................+ (2n+1)Cos(na)
using
C + iS =
to simplify let say x =
C + iS = 3x + 5x² + 7x³ + .....................+ (2n+1)xⁿ - eq 1
Multiplying both sides by x
(C + iS)x = 3x² + 5x³ + 7x⁴ + .....................+ (2n+1)x⁽ⁿ⁺¹⁾ - eq 2
Eq 1 - Eq 2
=> (C + iS)(1-x) = 3x + 2x² + 2x³ +...................+ 2xⁿ - (2n+1)x⁽ⁿ⁺¹⁾
=> (C + iS)(1-x) = 3x + 2x²(1 + x +...................+ xⁿ⁻²) - (2n+1)x⁽ⁿ⁺¹⁾
1 + x +...................+ xⁿ⁻² = 1(xⁿ⁻¹ - 1) / (x -1) (using summation formula of GP)
a =1 , r = x , terms = n-1
= (1 - xⁿ⁻¹)/(1-x) ( changing sign of numerator & denominator)
=> (C + iS)(1-x) = 3x + 2x²(1 - xⁿ⁻¹)/(1-x) - (2n+1)x⁽ⁿ⁺¹⁾
=> (C + iS) = 3x/(1-x) + 2x²(1 - xⁿ⁻¹)/(1-x)² - (2n+1)x⁽ⁿ⁺¹⁾/(1-x)
=> C + iS = (3x - x² - (2n+3)xⁿ⁺¹ +(2n+1)xⁿ⁺²)/(1-x)²
(1-x)² =
=> C + iS = (3 - x - (2n+3)xⁿ +(2n+1)xⁿ⁺¹)/y
y =
y = (cos(-a/2) + iSin(-a/2) - Cos(a/2) - iSin(a/2) )²
=> y = (Cos(a/2) - i(sin(a/2) -Cos(a/2) -iSin(a/2))²
=> y = (-2isin(a/2)²
=> y = 4i²Sin²(a/2)
=> y = - 4Sin²(a/2)
=> C + iS = (3 - (cosa + isina) - (2n+3)(cos(na) + iSin(na)) +(2n+1)(Cos(n+1)a + iSin(n+1)a/y
Equating i terms to get S
S = (-sina -(2n+3)Sin(na) + (2n+1)Sin(n+1)a ) / - 4Sin²(a/2)
=> S = (Sina + (2n+3)Sin(na) - (2n+1)Sin(n+1)a) / 4Sin²(a/2)
3Sina + 5Sin2a + 7Sin3a +..........................to n terms = (Sina + (2n+3)Sin(na) - (2n+1)Sin(n+1)a ) / 4Sin²(a/2)
Correct question is
3Sina + 5Sin2a + 7Sin3a +..........................to n terms
n term = (2n+1)Sin(na)
Let say Sum = S
S = 3Sina + 5Sin2a + 7Sin3a +..........................+ (2n+1)Sin(na)
Let say
C = 3Cosa + 5Cos2a + 7Cos3a +..........................+ (2n+1)Cos(na)
using
C + iS =
to simplify let say x =
C + iS = 3x + 5x² + 7x³ + .....................+ (2n+1)xⁿ - eq 1
Multiplying both sides by x
(C + iS)x = 3x² + 5x³ + 7x⁴ + .....................+ (2n+1)x⁽ⁿ⁺¹⁾ - eq 2
Eq 1 - Eq 2
=> (C + iS)(1-x) = 3x + 2x² + 2x³ +...................+ 2xⁿ - (2n+1)x⁽ⁿ⁺¹⁾
=> (C + iS)(1-x) = 3x + 2x²(1 + x +...................+ xⁿ⁻²) - (2n+1)x⁽ⁿ⁺¹⁾
1 + x +...................+ xⁿ⁻² = 1(xⁿ⁻¹ - 1) / (x -1) (using summation formula of GP)
a =1 , r = x , terms = n-1
= (1 - xⁿ⁻¹)/(1-x) ( changing sign of numerator & denominator)
=> (C + iS)(1-x) = 3x + 2x²(1 - xⁿ⁻¹)/(1-x) - (2n+1)x⁽ⁿ⁺¹⁾
=> (C + iS) = 3x/(1-x) + 2x²(1 - xⁿ⁻¹)/(1-x)² - (2n+1)x⁽ⁿ⁺¹⁾/(1-x)
=> C + iS = (3x - x² - (2n+3)xⁿ⁺¹ +(2n+1)xⁿ⁺²)/(1-x)²
(1-x)² =
=> C + iS = (3 - x - (2n+3)xⁿ +(2n+1)xⁿ⁺¹)/y
y =
y = (cos(-a/2) + iSin(-a/2) - Cos(a/2) - iSin(a/2) )²
=> y = (Cos(a/2) - i(sin(a/2) -Cos(a/2) -iSin(a/2))²
=> y = (-2isin(a/2)²
=> y = 4i²Sin²(a/2)
=> y = - 4Sin²(a/2)
=> C + iS = (3 - (cosa + isina) - (2n+3)(cos(na) + iSin(na)) +(2n+1)(Cos(n+1)a + iSin(n+1)a/y
Equating i terms to get S
S = (-sina -(2n+3)Sin(na) + (2n+1)Sin(n+1)a ) / - 4Sin²(a/2)
=> S = (Sina + (2n+3)Sin(na) - (2n+1)Sin(n+1)a) / 4Sin²(a/2)