Suppose a, b are positive real numbers such that a√a+b√b=91 and a√b +b√a=84.Find a+b .
Answers
Answered by
0
Step-by-step explanation:
Given Suppose a, b are positive real numbers such that a√a+b√b=91 and a√b +b√a=84. Find a+b .
- Given a√a + b√b = 91
- So a√b + b√a = 84
- Now √ab (√a + √b) = 84
- Let m = √a and n = √b
- So (√a)^3 + (√b)^3 = 91
- So m^3 + n^3 = 91 -----------1
- So mn (m + n) = 84------------2
- Multiply both sides by 3 we get
- 3mn(m + n) = 84 x 3
- 3 mn (m + n) = 252 ---------3
- Adding equation 1 and 3 we get
- So m^3 + n^3 + 3mn (m + n) = 343
- Or m^3 + n^3 + 3mn (m + n) = 7^3
- Or (m + n)^3 = 7^3
- Or m + n = 7
- Consider m^3 + n^3 = 91
- (m + n) (m^2 + n^2 – mn) = 91
- (m + n) (m^2 + n^2) – mn (m + n) = 91
- 7 (m^2 + n^2) – 84 = 91 (since mn(m + n) = 84)
- 7(m^2 + n^2) = 175
- Or m^2 + n^2 = 25
- Now √a = m and √b = n
- Or a = m^2 and b = n^2
- Or m^2 + n^2 = 25
- Or a + b = 25
Reference link will be
https://brainly.in/question/3025106
Similar questions