Math, asked by rcchaudhary534, 10 months ago

Suppose a, b are positive real numbers such that a√a+b√b=91 and a√b +b√a=84.Find a+b .

Answers

Answered by knjroopa
0

Step-by-step explanation:

Given Suppose a, b are positive real numbers such that a√a+b√b=91 and a√b +b√a=84. Find a+b .  

  • Given a√a + b√b = 91
  •     So a√b + b√a = 84
  • Now √ab (√a + √b) = 84
  • Let m = √a and n = √b
  • So (√a)^3 + (√b)^3 = 91
  • So m^3 + n^3 = 91 -----------1
  • So mn (m + n) = 84------------2
  • Multiply both sides by 3 we get
  •      3mn(m + n) = 84 x 3
  •      3 mn (m + n) = 252 ---------3
  • Adding equation 1 and 3 we get
  • So m^3 + n^3 + 3mn (m + n) = 343
  • Or m^3 + n^3 + 3mn (m + n) = 7^3
  •      Or (m + n)^3 = 7^3
  •      Or m + n = 7
  • Consider m^3 + n^3 = 91
  •       (m + n) (m^2 + n^2 – mn) = 91
  •    (m + n) (m^2 + n^2) – mn (m + n) = 91
  •       7 (m^2 + n^2) – 84 = 91 (since mn(m + n) = 84)
  •      7(m^2 + n^2) = 175
  • Or m^2 + n^2 = 25
  •                 Now √a = m and √b = n
  •               Or a = m^2 and b = n^2
  •                  Or m^2 + n^2 = 25
  •                           Or a + b = 25

Reference link will be

https://brainly.in/question/3025106

Similar questions