Math, asked by Anonymous, 10 months ago

Suppose ABC is an equilateral triangle it base BC as produced to D. Such that BC = CD. Calculate \angle ACD, \Angle ADc​

Answers

Answered by MysterySoul
62

Answer:

\bold\underline\huge\underline{\pink{\boxed{\mathfrak{Given}}}}

  • {\triangle} ABC is an equilateral triangle
  • BC = CD

____________________________________

\bold\underline\huge\underline{\pink{\boxed{\mathfrak</p><p>{To \: prove}}}}

  • (1){\angle}ACD and (2){\angle}ADC

  • {\green}Construction : Join CD & AD

__________________________________

In {\triangle}ABC

{\angle} A + {\angle} B + {\angle} C =180 {\degree}

x + x + x = 180{\degree}

3x =180 {\degree}

x = {\dfrac{180 \degree}{3}}

x = 60{\degree}

____________________________________

  • {\angle}{\green}A = {\angle}{\green}B = {\angle}{\green}C = 60{\degree}{\green}

___________________________________

  • BC = AC – [1]
  • BC = CD – [2]

  • AC = CD [from equation 1]

____________________________________

Interior(C) + Exterior(C) = 180{\degree}

60{\degree} + x = 180{\degree}

x = 180{\degree} - 60{\degree}= 120 {\degree}

____________________________________

In {\triangle} ACD

{\angle} A + {\angle}C + {\angle} D = 180 {\degree}

y + 120{\degree} + y = 180 {\degree}

2y + 120 {\degree} = 120 {\degree} = 180

2y = 180 {\degree} - 120 {\degree} = 60 {\degree}

y = {\dfrac{60 \degree}{2}} =30{\degree}

____________________________________

  • {\angle}{\color}{\green} A = y = 30{\degree}
  • {\angle}{\green} D = y = 30{\degree}
Attachments:
Similar questions