Math, asked by mukeshdhami, 1 year ago

suppose m,n are the integers and m= n²-n. Then show that m²-2m is divisible by 24​

Answers

Answered by hero2217
17
  • m^2 = n^4 + n^2 - 2n^3
  • 2m = 2n^2 - 2n
  • m^2 - 2m = n^4 - n^2 - 2n^3 + 2n
  • = n(n^3 - n - 2n^2 + 2)
  • n = 4 x + 0,1,2, or 3
  • check for each
Answered by curiosity93
27
  • m=n²-n

⇒m²-2m=(n²-n)²-2(n²-n)

              =n⁴+n²-2n³-2n²+2n

              =n⁴-2n³-n²+2n

              =n³(n-2)-n(n-2)

              =(n³-n)(n-2)

              =n(n²-1)(n-2)

              =n(n-1)(n+1)(n-2)

              =(n-2)(n-1)n(n+1)

  • The above expression represents the product of 4 consecutive numbers,∴it should be divisible by 24 provided n>2.

Similar questions