Math, asked by senboni123456, 1 month ago

Suppose  \sin(\theta)≠0. Prove that
 \frac{ \sin(n \theta) }{  \sin( \theta)  }  =  {2}^{n - 1} \prod \limits ^{n - 1}_{k = 1} \{ \cos( \theta)  -  \cos(  \frac{k\pi}{n} )  \} \\

Answers

Answered by shadowsabers03
18

We know,

\small\text{$\longrightarrow e^{i\theta}=\cos\theta+i\sin\theta$}

And,

\small\text{$\longrightarrow e^{-i\theta}=\cos\theta-i\sin\theta$}

Adding both,

\small\text{$\longrightarrow\cos\theta=\dfrac{e^{i\theta}+e^{-i\theta}}{2}$}

Taking difference,

\small\text{$\longrightarrow\sin\theta=\dfrac{e^{i\theta}-e^{-i\theta}}{2i}$}

So,

\small\text{$\longrightarrow\dfrac{\sin(n\theta)}{\sin\theta}=\dfrac{\left(\dfrac{e^{in\theta}-e^{-in\theta}}{2i}\right)}{\left(\dfrac{e^{i\theta}-e^{-i\theta}}{2i}\right)}$}

\small\text{$\longrightarrow\dfrac{\sin(n\theta)}{\sin\theta}=\dfrac{e^{in\theta}-\dfrac{1}{e^{in\theta}}}{e^{i\theta}-\dfrac{1}{e^{i\theta}}}$}

\small\text{$\longrightarrow\dfrac{\sin(n\theta)}{\sin\theta}=\dfrac{\left(\dfrac{e^{2in\theta}-1}{e^{in\theta}}\right)}{\left(\dfrac{e^{2i\theta}-1}{e^{i\theta}}\right)}$}

\small\text{$\longrightarrow\dfrac{\sin(n\theta)}{\sin\theta}=\dfrac{e^{2in\theta}-1}{e^{2i\theta}-1}\cdot e^{i(1-n)\theta}\quad\quad\dots(1)$}

We know,

\small\text{$\longrightarrow e^{i2\pi}=\left(e^{\frac {i2\pi}{n}}\right)^n=1$}

\small\text{$\longrightarrow \left(e^{\frac {i2\pi k}{n}}\right)^n=1^k=1$}

Taking \small\text{$x=e^{\frac{i2\pi k}{n}},$}

\small\text{$\longrightarrow x^n-1=0$}

This means \small\text{$e^{\frac{i2\pi k}{n}}$} is the k'th root of \small\text{$x^n-1=0$} so \small\text{$k=an+r$} where \small\text{$a,\ r\in\mathbb{Z}$} and \small\text{$0\leq r<n.$}

So one can write,

\small\text{$\displaystyle\longrightarrow x^n-1=\prod_{k=0}^{n-1}\left(x-e^{\frac{i2\pi k}{n}}\right)$}

Taking \small\text{$x=e^{2i\theta},$}

\small\text{$\displaystyle\longrightarrow\left(e^{2i\theta}\right)^n-1=\prod_{k=0}^{n-1}\left(e^{2i\theta}-e^{\frac{i2\pi k}{n}}\right)$}

\small\text{$\displaystyle\longrightarrow e^{2in\theta}-1=\left(e^{2i\theta}-1\right)\prod_{k=1}^{n-1}\left(e^{2i\theta}-e^{\frac{i2\pi k}{n}}\right)$}

\small\text{$\displaystyle\longrightarrow\dfrac{e^{2in\theta}-1}{e^{2i\theta}-1}=\prod_{k=1}^{n-1}\left(e^{i\theta}+e^{\frac{i\pi k}{n}}\right)\left(e^{i\theta}-e^{\frac{i\pi k}{n}}\right)$}

\small\text{$\displaystyle\longrightarrow\dfrac{e^{2in\theta}-1}{e^{2i\theta}-1}=\prod_{k=1}^{n-1}\left(e^{i\theta}-\left(-e^{\frac{i\pi k}{n}}\right)\right)\left(e^{i\theta}-e^{\frac{i\pi k}{n}}\right)$}

\small\text{$\displaystyle\longrightarrow\dfrac{e^{2in\theta}-1}{e^{2i\theta}-1}=\prod_{k=1}^{n-1}\left(e^{i\theta}-e^{-i\pi}\cdot e^{\frac{i\pi k}{n}}\right)\left(e^{i\theta}-e^{\frac{i\pi k}{n}}\right)$}

\small\text{$\displaystyle\longrightarrow\dfrac{e^{2in\theta}-1}{e^{2i\theta}-1}=\prod_{k=1}^{n-1}\left(e^{i\theta}-e^{-\frac{i(n-k)\pi}{n}}\right)\prod_{k=1}^{n-1}\left(e^{i\theta}-e^{\frac{i\pi k}{n}}\right)$}

The terms in \small\text{$\displaystyle\prod_{k=1}^{n-1}\left(e^{i\theta}-e^{-\frac{i(n-k)\pi}{n}}\right)$} can be reversed and become \small\text{$\displaystyle\prod_{k=1}^{n-1}\left(e^{i\theta}-e^{-\frac{ik\pi}{n}}\right).$}

\small\text{$\displaystyle\longrightarrow \dfrac{e^{2in\theta}-1}{e^{2i\theta}-1}=\prod_{k=1}^{n-1}\left(e^{i\theta}-e^{-\frac{ik\pi}{n}}\right)\prod_{k=1}^{n-1}\left(e^{i\theta}-e^{\frac{ik\pi}{n}}\right)$}

\small\text{$\displaystyle\longrightarrow \dfrac{e^{2in\theta}-1}{e^{2i\theta}-1}=\prod_{k=1}^{n-1}\left(e^{2i\theta}-e^{i\theta}\left(e^{\frac{ik\pi}{n}}+e^{-\frac{ik\pi}{n}}\right)+1\right)$}

\small\text{$\displaystyle\longrightarrow \dfrac{e^{2in\theta}-1}{e^{2i\theta}-1}=\prod_{k=1}^{n-1}e^{i\theta}\left(e^{i\theta}-e^{\frac{ik\pi}{n}}-e^{-\frac{ik\pi}{n}}+e^{-i\theta}\right)$}

\small\text{$\displaystyle\longrightarrow \dfrac{e^{2in\theta}-1}{e^{2i\theta}-1}=e^{i(n-1)\theta}\prod_{k=1}^{n-1}\left(e^{i\theta}-e^{\frac{ik\pi}{n}}-e^{-\frac{ik\pi}{n}}+e^{-i\theta}\right)$}

\small\text{$\displaystyle\longrightarrow \dfrac{e^{2in\theta}-1}{e^{2i\theta}-1}\cdot e^{i(1-n)\theta}=\prod_{k=1}^{n-1}\left(e^{i\theta}-e^{\frac{ik\pi}{n}}-e^{-\frac{ik\pi}{n}}+e^{-i\theta}\right)$}

Then (1) becomes,

\small\text{$\displaystyle\longrightarrow\dfrac{\sin(n\theta)}{\sin\theta}=\prod_{k=1}^{n-1}\left(e^{i\theta}-e^{\frac{ik\pi}{n}}-e^{-\frac{ik\pi}{n}}+e^{-i\theta}\right)$}

\small\text{$\displaystyle\longrightarrow\dfrac{\sin(n\theta)}{\sin\theta}=2^{n-1}\prod_{k=1}^{n-1}\dfrac{\left(e^{i\theta}+e^{-i\theta}-e^{\frac{ik\pi}{n}}-e^{-\frac{ik\pi}{n}}\right)}{2}$}

\small\text{$\displaystyle\longrightarrow\dfrac{\sin(n\theta)}{\sin\theta}=2^{n-1}\prod_{k=1}^{n-1}\left(\dfrac{e^{i\theta}+e^{-i\theta}}{2}-\dfrac{e^{\frac{ik\pi}{n}}+e^{-\frac{ik\pi}{n}}}{2}\right)$}

\small\text{$\displaystyle\longrightarrow\dfrac{\sin(n\theta)}{\sin\theta}=2^{n-1}\prod_{k=1}^{n-1}\left(\cos\theta-\cos\left(\dfrac{k\pi}{n}\right)\right)$}


amansharma264: Excellent
Similar questions