Math, asked by riddhi945, 1 month ago

Suppose that the roots of x3 + 3x2 + 4x − 11 = 0 are a, b and c, and that the roots of x3 + rx2 + 5s + t = 0 are a + b, b + c, c + a. Find t.​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

We know that,

\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2}  + cx + d, \: then

 \red{\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}}

 \red{\boxed{ \bf{ \:  \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =   \dfrac{c}{a}}}}

 \red{\boxed{ \bf{ \:  \alpha \beta \gamma  =  - \dfrac{d}{a}}}}

Now,

Given that

\rm :\longmapsto\:a,b,c \: are \: zeroes \: of \:  {x}^{3} +  {3x}^{2} + 4x - 11

So,

\rm :\longmapsto\:a + b + c =  - \dfrac{3}{1} =  -  \: 3

\rm :\longmapsto\:ab+ bc + ca =  \dfrac{4}{1} =  \: 4

\rm :\longmapsto\:abc =  - \dfrac{( - 11)}{1} =  \: 11

Now, again given that,

\rm :\longmapsto\:a + b,b + c,c + a \: are \: zeroes \: of \:  {x}^{3} +  {rx}^{2} + sx + t

So,

\rm :\longmapsto\:(a + b)(b + c)(c + a) =  - \dfrac{t}{1} =  -  \: t

\bf\implies \:t \:  =  - (a + b)(b + c)(c + a)

 \rm \:  =  \:  - (ab + ac + b^{2}  + bc)(c + a)

 \rm \:= - (abc + a {c}^{2}+ b^{2}c  + b {c}^{2}  +  {ba}^{2} +  {ca}^{2} +  {ab}^{2} + abc)

On adding and Subtracting abc, we get

 \rm \:= - (abc + a {c}^{2}+ b^{2}c  + b {c}^{2}  +  {ba}^{2} +  {ca}^{2} +  {ab}^{2} + abc + abc - abc)

Now on rearranging the terms, we get

 \rm \:  =  - \bigg(({ba}^{2} + abc +  {ca}^{2} ) + ( {ab}^{2} +  {cb}^{2} + abc) + ( abc + {bc}^{2} +  {ac}^{2}) - abc\bigg)

 \rm \:  =  \:  - \bigg(a(ab + bc + ca) + b(ab + bc + ca) + c(ab + bc + ca) - abc\bigg)

 \rm \:  =  \:  - \bigg((a + b + c)(ab + bc + ca) - abc\bigg)

On substituting the values, evaluated above, we get

 \rm \:  =  \:  - \bigg( - 3 \times 4  -  11\bigg)

 \rm \:  =  \:  - \bigg( - 12  -  11\bigg)

 \rm \:  =  \:  - \bigg(  - 23\bigg)

 \rm \:  =  \: 23

Hence,

\bf\implies \:t = 23

Answered by audhityamohan
2

Answer:

the answer's 23

Similar questions