Physics, asked by harinamsingh6567, 10 months ago

Suppose the ends of the coil in the previous problem are connected to a resistance of 100 Ω. Neglecting the resistance of the coil, find the heat produced in the circuit in one minute.

Answers

Answered by dk6060805
0

Use Q = mCΔT

Explanation:

H = \int_{0}^{t}i^2RdT = \int_{0}^{t}\frac {B^2A^2\omega^2}{R^2} sin \omega tR\ dt

= \frac {B^2A^2\omega^2}{2R^2}\int_{0}^{t}(1 - cos2\omega t)dt

= \frac {B^2A^2\omega^2}{2R}(t - \frac {sin2\omega t}{2\omega})_0^1^m^i^n^u^t^e

= \frac {B^2A^2\omega^2}{2R}(60 - \frac {sin2\omega t}{2\omega})_0^1^m^i^n^u^t^e^

= \frac {B^2A^2\omega^2}{2R}(60 - \frac {sin2 \times 8\times \frac {2\pi}{60}\times60}{2\times80\times2\pi/60})

= \frac {60}{200} \times \pi^2r^4 \times B^2 \times (80^4\times \frac {2\pi}{60})^2

= \frac {60}{200} \times 10 \times \frac {64}{9} \times 10 \times 625 \times 10^-^8 \times 10^-^4

= \frac {625\times 6\times 64}{9\times 2}\times 10^-^1^1

= 1.33 \times 10^-^7 J

Similar questions