Suppose x1,x2 be the roots of ax^2+bx+c=0 and x3,x4 be the roots of the equation px^2+qx+c=0
Answers
Answered by
3
Answer:
i) Applying properties of roots of Q.E.,
x₁ + x₂ = -b/a and x₁*x₂ = c/a --------- (1)
x₃ + x₄ = -q/p and x₃*x₄ = r/p ----------- (2)
ii) Since, x₁, x₂, 1/x₃, 1/x₄ are in A.P.,
x₂ - x₁ = 1/x₄ - 1/x₃ [Definition of AP - Difference of successive terms remain same]
==> x₂ - x₁ = (x₃ - x₄)/(x₃*x₄)
Squaring both sides, (x₂ - x₁)² = (x₃ - x₄)²/(x₃*x₄)²
Applying algebraic identity, (a - b)² = (a + b)² - 4ab to the above,
(x₂ + x₁)² - 4x₁*x₂ = {(x₃ + x₄)² - 4x₃*x₄}/(x₃*x₄)²
Substituting the values from equations (1) & (2) to the above,
(b²/a²) - 4c/a = [(q²/p²) - 4r/p]/(r/p)²
This simplifies as: (b² - 4ac)/a² = (q² - 4pr)/r²
So, (b² - 4ac)/(q² - 4pr) = (a/r)²
Hope it helps you....
Similar questions
Hindi,
5 months ago
CBSE BOARD XII,
5 months ago
Math,
5 months ago
Social Sciences,
11 months ago
Social Sciences,
11 months ago
Hindi,
1 year ago